Buk air defense system: photos, characteristics, modifications. Anti-aircraft missile system "Buk M2": photos, characteristics, production Testing of the "Buk" installation


The self-propelled military air defense system "Buk" (SA-11 "Gadfly") is designed to combat maneuvering aerodynamic targets at low and medium altitudes, in conditions of radio countermeasures, and in the future - against Lance-type ballistic missiles.

Development, which began in 1972, involved the use of cooperation between developers and manufacturers, previously involved in the creation of the Kub air defense system. At the same time, the development of the M-22 (“Hurricane”) air defense system for the Navy was determined using the same missile defense system as the “Buk” complex.

The developer of the Buk (9K37) air defense system was generally identified as the Instrument Engineering Research Institute of the Phazotron Research and Design Association. A. A. Rastov was appointed chief designer of the complex.

The development of missiles was entrusted to the Sverdlovsk machine-building design bureau "Novator" headed by L.V. Lyulev. The detection and target designation station (STS) was developed at the Research Institute of Measuring Instruments under the leadership of chief designer A.P. Vetoshko (then Yu.P. Shchekotov).

Launch-loading units (PZU) were created at the Start machine-building design bureau under the leadership of A.I. Yaskin.

A set of technical support and maintenance equipment on a vehicle chassis was also developed for the complex.

Completion of the development of the complex was planned for 1975.

However, in 1974, it was decided to create the Buk air defense system in two stages. It was initially proposed to rapidly develop a missile defense system and a self-propelled firing system for the Buk air defense system, capable of launching both 9M38 missiles and 3M9MZ missiles from the Kub-M3 complex. On this basis, using other means of the Kub-M3 complex, it was planned to create the Buk-1 (9K37-1) air defense system, ensuring its entry into joint testing in September 1974, maintaining the previously prescribed volumes and timing of work on the Buk complex » in full specified composition.

For the Buk-1 air defense system, it was envisaged that each of the five anti-aircraft missile batteries of the Kub-M3 regiment, in addition to one self-propelled reconnaissance and guidance installation and four self-propelled launchers, would have one 9A38 self-propelled firing system from the Buk air defense system. . Thus, due to the use of a self-propelled firing system costing about 30% of the cost of all other battery assets in the Kub-MZ anti-aircraft missile regiment, the number of target channels increased from 5 to 10, and the number of combat-ready missiles - from 60 to 75.

The 9A38 self-propelled firing system, placed on the GM-569 tracked chassis, seemed to combine the functions of a self-propelled reconnaissance and guidance system and a self-propelled launcher used as part of the Kub-M3 air defense system. It provided search in a designated sector, detection and acquisition of a target for auto-tracking, solution of pre-launch tasks, launch and homing of three missiles (9M38 or 3M9MZ) located on it, as well as three 3M9MZ missiles located on one of the self-propelled launchers 2P25MZ air defense missile system associated with it "Kub-M3Z". The combat operation of a self-propelled fire installation could be carried out both with control and target designation from a self-propelled reconnaissance and guidance installation, and autonomously.

The 9A38 self-propelled firing system includes a 9S35 radar station, a digital computer system, a launcher with a power tracking drive, a ground-based radar interrogator operating in the Password identification system, a television-optical sight, telecode communication equipment with a self-propelled reconnaissance and guidance installation, equipment wired communication with a self-propelled launcher, an autonomous power supply system based on a gas turbine generator, navigation, topographical and orientation equipment, a life support system.

The mass of a self-propelled firing system with a combat crew of four people is 34 tons.

Advances in the development of microwave devices, quartz and electromechanical filters, and digital computers (DCs) have made it possible to combine the functions of target detection, tracking, and target illumination stations into the 9S35 radar. The station operates in the centimeter wavelength range using a single antenna and two transmitters - pulsed and continuous radiation. The first transmitter was used to detect and auto-track a target in a quasi-continuous radiation mode or, if difficulties arose with unambiguous range determination, in a pulse mode with pulse compression (using linear frequency modulation), the second transmitter (continuous radiation) was used to illuminate the target and the missile defense system. The station's antenna system conducts a sector search using an electromechanical method, target tracking by angular coordinates and range is carried out using a monopulse method, and signal processing is carried out by a digital computer. The width of the antenna pattern of the target tracking channel is 1.3° in azimuth and 2.5° in elevation, and the width of the illumination channel is 1.4° in azimuth and 2.65° in elevation. The search sector review time (120° in azimuth and 6-7° in elevation) in autonomous mode is 4 s, in control mode (10° in azimuth and 7° in elevation) - 2 s.

The average transmitter power of the target detection and tracking channel when using quasi-continuous signals is at least 1 kW, and when using signals with linear frequency modulation - at least 0.5 kW. The average power of the target illumination transmitter is at least 2 kW. The noise figure of the station's survey and direction-finding receivers did not exceed 10 dB. The radar transition time from standby mode to combat mode is no more than 20 s. The station is capable of unambiguously determining the speed of a target with an accuracy of -20... + 10 m/s. Selection of moving targets is ensured. Maximum errors in range do not exceed 175 m, root-mean-square errors in measuring angular coordinates - no more than 0.5 d.u. The radar is protected from active, passive and combined interference. The equipment of the self-propelled firing system ensures that the launch of missile defense systems is blocked when accompanied by a friendly aircraft or helicopter.

The 9A38 self-propelled firing system has a launcher with interchangeable guides for either three 3M9MZ missiles or three 9M38 missiles.

The 9M38 anti-aircraft missile is single-stage, has a dual-mode solid propellant engine (total operating time is about 15 s). The rejection of the ramjet engine was explained both by the instability of its operation at high angles of attack and high resistance in the passive part of the trajectory, and by the complexity of its development, which largely determined the delay in the creation of the “Cube” complex. Metal is used in the power structure of the engine chamber.

The general design of the missile - normal, X-shaped, with a low aspect ratio wing - was externally reminiscent of American ship-based anti-aircraft missiles of the Tartar and Standard families, which corresponded to the strict dimensional restrictions when using the 9M38 missile defense system in the M-22 complex, developed for the Soviet fleet.

In the front part of the missile, a semi-active homing head, autopilot equipment, power supplies and a warhead are successively located. To reduce the spread of alignment over flight time, the combustion chamber of the solid propellant rocket engine is located closer to the middle of the rocket, the nozzle block includes an elongated gas duct, around which the steering drive elements are located.

The smaller diameter of the front compartment of the rocket (330 mm) in relation to the engine and tail compartment is determined by the continuity of a number of elements of the 3M9 rocket. A new seeker with a combined control system was developed for the rocket. The complex implements self-guidance of missiles using the proportional navigation method.

The 9M38 missile defense system can hit targets at altitudes from 25 m to 18-20 km at ranges from 3.5 to 25-32 km. The rocket has a flight speed of 1000 m/s and can maneuver with overloads of up to 19g.

The mass of the rocket is 685 kg, including the warhead - 70 kg.

The design of the 9M38 missile ensures its delivery to the troops in a transport container in a fully equipped form, as well as operation without inspections and routine maintenance for 10 years.

Tests of the Buk-1 air defense system took place from August 1975 to October 1976.

As a result of the tests, the detection range of self-propelled firing system radar aircraft in autonomous mode was obtained from 65 to 77 km at altitudes of more than 3000 m, which at low altitudes (30-100 m) decreased to 32-41 km. Helicopters at low altitudes were detected at a distance of 21-35 km. In the centralized mode of operation, due to the limited capabilities of the 1S91M2 self-propelled reconnaissance and guidance unit issuing target designations, the aircraft detection range was reduced to 44 km for targets at altitudes of 3000-7000 m and to 21-28 km at low altitudes.



The operating time of the self-propelled firing system in autonomous mode (from target detection to missile launch) was 24-27 s. The loading and unloading time for three 3M9MZ or 9M38 missiles was about 9 minutes.

When firing 9M38 missiles, the destruction of aircraft flying at altitudes of more than 3 km was ensured at a range of 3.4 to 20.5 km, and at an altitude of 30 m - from 5 to 15.4 km. The affected area ranged from 30 m to 14 km in height, and 18 km in terms of heading. The probability of an aircraft being hit by one 9M38 missile was 0.70-0.93.

The complex was put into service in 1978. Due to the fact that the 9A38 self-propelled firing system and the 9M38 missile defense system were means that only complemented the Kub-MZ air defense system, the complex was named “Kub-M4” (2K12M4).

The Kub-M4 complexes that appeared in the air defense forces made it possible to significantly increase the effectiveness of air defense of tank divisions of the ground forces of the Soviet Army.

Joint tests of the Buk complex in its full specified composition were carried out from November 1977 to March 1979.

The Buk air defense systems had the following characteristics.

The 9S470 command post located on the GM-579 chassis provided: reception, display and processing of target information received from the 9S18 detection and target designation station and six 9A310 self-propelled firing systems, as well as from higher command posts; selection of dangerous targets and their distribution between self-propelled firing systems in manual and automatic modes, setting their sectors of responsibility, displaying information about the presence of missiles on them and on launch-loading installations; about the letters of the illumination transmitters of self-propelled firing systems, about their work on targets; about the operating modes of the detection and target designation station; organizing the operation of the complex in conditions of interference and the enemy’s use of anti-radar missiles; documentation of work and training in calculation of CP. The command post processed messages about 46 targets at altitudes up to 20 km in a zone with a radius of 100 km per review cycle of the detection and target designation station and issued up to 6 target designations to self-propelled firing systems with an accuracy of 1 ° in azimuth and elevation, 400-700 m in range . The weight of the command post with a combat crew of 6 people did not exceed 28 tons. The command post has bulletproof and anti-radiation protection and is capable of speeds on the road of up to 65 km/h, and on rough terrain - up to 45 km/h. Power reserve - 500 km.

The detection and target designation station 9S18 (“Dome”) is a three-coordinate coherent-pulse station that operates in the centimeter wavelength range, has electronic scanning of the beam in elevation (in a sector of 30 or 40°) and mechanical (circular or in a given sector) rotation of the antenna in azimuth (with using an electric or hydraulic drive). The station is designed to detect and identify air targets at ranges of up to 110-120 km (45 km at a flight altitude of 30 m) and transmit information about the air situation to the 9S470 control post.

The rate of viewing the space, depending on the established sector in elevation and the presence of interference, ranged from 4.5 to 18 s for all-round viewing and from 2.5 to 4.5 s for viewing in a 30° sector. Radar information is transmitted via telecode line to the 9S470 control unit in the amount of 75 marks per review period (4.5 s).



The root mean square errors (RMS) of measuring target coordinates were: no more than 20" in azimuth and elevation, no more than 130 m in range. Resolution in range is no worse than 300 m, in azimuth and elevation - 4°. For protection against targeted interference was used to adjust the carrier frequency from pulse to pulse, from response - the same and blanking of range intervals along the auto-recording channel, from non-synchronous pulses, changing the slope of linear frequency modulation and blanking of range sections. In case of noise barrage of self-covering and external covering of given levels, the detection and target designation station ensures detection of fighter aircraft at a distance of at least 50 km. The station ensures tracking of targets with a probability of at least 0.5 against the background of local objects and passive interference using a moving target selection circuit with automatic wind speed compensation. The station is protected from anti-radar missiles using software adjustment carrier frequency in 1.3 s, transition to circular polarization of probing signals or to intermittent radiation (flicker) mode.

The station includes an antenna post consisting of a reflector with a truncated parabolic profile, an irradiator in the form of a waveguide line that provides electronic scanning of the beam in the elevation plane, a rotating device, a device for folding the antenna into the stowed position, a transmitting device (with an average power of up to 3.5 kW) , receiving device (with a noise figure of no more than 8) and other systems. All station equipment was located on a modified self-propelled chassis of the SU 1 OOP family. The difference between the tracked base of the detection and target designation station and the chassis of other combat vehicles of the Buk air defense system was determined by the fact that the Kupol radar was initially designed for development outside the air defense system as a means of detecting the divisional air defense unit of the ground.



The time for transferring the station from the traveling position to the combat position is no more than 5 minutes, and from standby mode to working mode - no more than 20 seconds. The mass of the station with a crew of 3 people is no more than 28.5 tons.

The 9A310 self-propelled firing system in its purpose and design differed from the 9A38 self-propelled firing system of the Kub-M4 (Buk-1) air defense system in that, using a telecode line, it was not interfaced with the 1S91MZ self-propelled reconnaissance and guidance system and the P25MZ self-propelled launcher, and with a 9S470 gearbox and a 9A39 launcher-loading unit. In addition, on the launcher of the 9A310 self-propelled firing system there were not three, but four 9M38 missiles. The time it takes to transfer it from traveling to combat position does not exceed 5 minutes. The time for transferring the installation from standby mode to operating mode, in particular, after changing the position with the equipment turned on, is no more than 20 s. Loading a 9A310 self-propelled firing system with four missiles from a launcher-loading installation was carried out in 12 minutes, and from a transport vehicle in 16 minutes. The mass of a self-propelled firing system with a combat crew of 4 people did not exceed 32.4 tons.

The length of the self-propelled firing system is 9.3 m, width is 3.25 m (9.03 m in working position), height is 3.8 m (7.72 m).

The 9A39 launcher-loading unit, located on the GM-577 chassis, is designed for transporting and storing eight missiles (4 each on the launcher and on fixed cradle), launching four missiles, self-loading its launcher with four missiles from the cradle, self-loading eight missiles from a transport vehicle ( in 26 minutes), from ground cradles and from transport containers, loading and unloading a self-propelled firing system with four missiles. Thus, the launch-loading installation of the Buk air defense system combined the functions of a transport-loading vehicle and a self-propelled launcher of the Kub complex. In addition to the launching device with a power servo drive, a crane and cradle, the launch-loading installation included a digital computer, navigation, topographical and orientation equipment, telecode communication, energy supply and power supply units. The mass of the installation with a combat crew of 3 people does not exceed 35.5 tons.

The length of the launch-loading installation is 9.96 m, width - 3.316 m, height - 3.8 m.

The command post of the complex receives information about the air situation from the command post of the Buk anti-aircraft missile brigade (ASU Polyana-D4) and from the detection and target designation station, processes it and issues target designation to self-propelled firing units, which, according to the control center, search and capture automatic target tracking. When targets enter the affected area, a missile defense system is launched. Missile guidance is carried out using the proportional navigation method, which ensures high accuracy of targeting. When approaching the target, the seeker issues a command to the radio fuse for close arming. When approaching a target at a distance of 17 m, the warhead is detonated upon command. If the radio fuse fails to operate, the missile defense system will self-destruct. If the target is not hit, a second missile defense system is launched at it.

Compared to the Kub-M3 and Kub-M4 air defense systems, the Buk complex has higher combat and operational characteristics and provides: simultaneous firing by a division of up to six targets, and, if necessary, the performance of up to six independent combat missions with the autonomous use of self-propelled firing installations; greater reliability of target detection due to the organization of a joint survey of space by a detection and target designation station and six self-propelled firing systems; increased noise immunity due to the use of an on-board seeker computer and a special type of illumination signal; greater efficiency in hitting a target due to the increased power of the missile defense warhead.



Based on the results of firing tests and modeling, it was determined that the Buk air defense system provides fire at non-maneuvering targets flying at speeds of up to 800 m/s at altitudes from 25 m to 18 km, at ranges from 3 to 25 km (up to 30 km at target speeds up to 300 m/s) with a heading parameter of up to 18 km with a probability of hitting one missile defense equal to 0.7-0.8. When firing at targets maneuvering with overloads up to 8g, the probability of defeat was reduced to 0.6.

Organizationally, the Buk air defense systems were consolidated into anti-aircraft missile brigades, which included: CP (combat control point of the brigade from the Polyana-D4 automated control system); four anti-aircraft missile battalions with their own 9S470 command post, 9S18 detection and target designation station, communications platoon and three anti-aircraft missile batteries with two 9A310 self-propelled firing systems and one 9A39 launcher-loader in each; as well as technical support and maintenance units. The Buk anti-aircraft missile brigade was to be controlled from the army's air defense command post.

The Buk complex was adopted by the Air Defense Forces of the North in 1980. Serial production of the Buk air defense systems was mastered in cooperation involved in the Kub-M4 complex.


Damage zones of the Buk-M 1 -2 air defense system

In 1979, the Buk air defense system was modernized in order to increase its combat capabilities and protect its electronic equipment from interference and anti-radar missiles. As a result of tests carried out in 1982, it was found that the modernized Buk-M1 complex, compared to the Buk air defense system, provides a larger aircraft engagement zone, is capable of shooting down ALCM cruise missiles with a probability of hitting one missile system of at least 0.4, Hugh-Cobra helicopters with a probability of 0.6-0.7, as well as hovering helicopters with a probability of 0.3-0.4 at a range from 3.5 to 6-10 km. The self-propelled firing system uses 72 letter illumination frequencies (instead of 36), which contributes to increased protection from mutual and intentional interference. Recognition of three classes of targets is provided: aircraft, ballistic missiles, helicopters. The 9S470M1 command post, in comparison with the 9S470 command post, provides simultaneous reception of information from its own detection and target designation station and about six targets from the air defense control post of a motorized rifle (tank) division or from the army air defense command post, as well as comprehensive training of all crews of air defense missile systems. The 9A310M1 self-propelled firing system, compared to the 9A310 installation, provides target detection and acquisition for auto tracking at long ranges (25-30%), as well as recognition of aircraft, ballistic missiles and helicopters with a probability of at least 0.6.

The complex uses a more advanced detection and target designation station 9S18M1 (“Kupol-M1”), which has a flat angular phased array and a self-propelled tracked chassis GM567M, the same type as the chassis of the KP, self-propelled firing installation and launch-loading installation. The length of the detection and target designation station is 9.59 m, width - 3.25 m, height - 3.25 m (8.02 m in working position), weight - 35 tons. The Buk-M1 complex provides effective organizational and technical measures for protection against anti-radar missiles. The combat assets of the Buk-M1 complex are interchangeable with the same type of combat assets of the Buk air defense system without modifications; the standard organization of combat formations and technical units is similar to the Buk complex. The technological equipment of the complex includes: 9V95M1E - an automated control and testing mobile station machine on a ZIL-131 and a trailer; 9V883, 9V884, 9V894 - repair and maintenance vehicles for “Ural-43203-1012”; 9V881E - maintenance vehicle “Ural-43203-1012”; 9T229 - transport vehicle for 8 missiles (or six containers with missiles) on the KrAZ-255B; 9T31M - truck crane; MTO-ATG-M1 - maintenance workshop for ZIL-131.

The Buk-M1 complex was adopted by the Air Defense Forces of the Army in 1983. In the same year, the Navy M-22 Uragan air defense system, unified with the Buk air defense system according to the 9M38 missile system, also entered service. Complexes of the Buk family were offered for delivery abroad under the name Gang.

During the Oborona-92 exercise, the Buk family of air defense systems successfully fired at targets based on the R-17 and Zvezda ballistic missiles and on the Smerch MLRS missile.

In December 1992, the President of the Russian Federation signed a decree on further modernization of the Buk complex - the creation of an air defense system, which was repeatedly presented at various international exhibitions under the name Ural. Cooperation of enterprises led by NIIP named after. V.V. Tikhonravova in 1994-97. work was carried out to create the Buk-M1-2 air defense system.

Through the use of the new 9M317 missile and the modernization of other means of the complex, for the first time it is possible to destroy tactical ballistic missiles of the Lance type and aircraft missiles at ranges of up to 20 km, elements of precision weapons, surface ships at ranges of up to 25 km and ground targets (aircraft at airfields, launch installations, large command posts) at ranges up to 15 km. Increased effectiveness of destruction of aircraft, helicopters and wings

armored missiles. The boundaries of the affected zones have been increased to 45 km in range and up to 25 km in altitude. The new missile provides for the use of an inertial-corrected control system with a semi-active radar seeker with guidance using the proportional navigation method. The launch mass of the rocket was 710-720 kg with a warhead mass of 50-70 kg. The new 9M317 missile differed in appearance from the 9M38 by a significantly shorter wing chord length. In addition to the use of an improved missile, it is planned to introduce into the complex a new radar for illuminating targets and guiding missiles with the antenna placed in the working position at a height of up to 22 m using a telescopic device. With the introduction of target illumination and guidance radars, the complex's combat capabilities to engage low-flying targets, in particular modern cruise missiles, are significantly expanded.

The complex provides for the presence of command posts and firing sections of two types: four sections, each of which includes one advanced self-propelled firing unit, carrying four missiles and capable of simultaneously firing up to four targets, and one launch-loading unit with eight missiles; two sections, each of which includes one illumination and guidance radar, also capable of providing simultaneous fire at up to four targets, and two launch-loading installations with eight missiles on each.



The complex is being developed in two versions: mobile on tracked vehicles of the GM569 family, similar to those used in previous modifications of the Buk complex, and also transportable on road trains with semi-trailers and KrAZ vehicles. In the latter option, with a slight reduction in cost, the maneuverability indicators deteriorate and the deployment time of the air defense system from the march increases from 5 to 10-15 minutes.

In particular, the Start MKB, while carrying out work to modernize the Buk-M complex (Buk-M 1-2 and Buk-M2 air defense systems), developed the 9P619 launcher and the 9A316 launcher-loading installation on a tracked chassis, and also a 9A318 launcher on a wheeled chassis. The process of development of the Kub and Buk families of air defense systems is an excellent example of the evolutionary development of weapons and military equipment, ensuring a continuous increase in the combat capabilities of the air defense of ground forces at relatively low costs. Unfortunately, this development path also creates the preconditions for a gradual technical lag. In particular, even in the promising versions of the Buk complex, neither the safest and most reliable scheme for continuous operation of a missile in a transport and launch container, nor the all-aspect vertical launch of missiles, introduced in all other second-generation ground forces air defense systems, were used. And yet, in difficult socio-economic conditions, the evolutionary path of weapons development must be considered as practically the only possible one, and the choice made by the customer and the developers of the Kub and Buk air defense systems as the correct one. The air defense system is in service with Finland, India, Russia, Syria, and Yugoslavia.


TACTICAL AND TECHNICAL CHARACTERISTICS


During World War II, the main enemy of tanks on the battlefield was enemy artillery or armored vehicles, but soon the situation changed dramatically and enemy aircraft increasingly became one of the main enemies of tanks. The threat from the air has especially increased with the appearance of combat helicopters over the battlefield. These vehicles have become real “tank hunters”. In October 1973, eighteen Israeli Air Force Cobra helicopters destroyed ninety Egyptian tanks in one mission without losing a single helicopter.

It became clear that the air defense forces must not only cover populated areas and fixed objects as before, but also cover their troops on the march. The Soviet military very quickly came to understand this fact. Work on the creation of MANPADS was intensified, and at the end of the 50s, the development of the Kub self-propelled anti-aircraft missile system began in the USSR. Its main task was to protect ground troops, including tank formations, from enemy aircraft and helicopters operating at medium and low altitudes. The complex was put into service in 1967. But already at the beginning of 1972, a resolution was adopted ordering the development of a new self-propelled air defense system to begin, which was to replace the Kub anti-aircraft missile system. Thus began the creation of the Buk, one of the most effective air defense systems in the world.

History of the creation of the Buk air defense system

The main developer of the new air defense system was the Tikhomirov Research Institute of Instrument Engineering (this organization was involved in the creation of the “Cube”). At the same time, work began on the development of the Uragan anti-aircraft complex for the needs of the Navy using a single missile.

The developers had to invest in a very short time frame, so the commissioning of the complex was divided into two stages. Initially, all efforts were devoted to creating a new 9M38 anti-aircraft missile (SAM) and a self-propelled firing system (SFA). They became part of the batteries of the “Cube” complex and significantly increased its combat power. It was in this form that the 2K12M4 “Kub-M4” air defense system was adopted by the USSR Ground Forces in 1978.

The new modernized “Cube” had much better technical characteristics: the number of target channels increased (from 5 to 10), the range and height of destruction of air targets increased, and now the complex could destroy faster targets.

The second stage of creating a new air defense system involved the creation of an integral complex consisting of a 9A310 self-propelled launcher armed with new M938 anti-aircraft missiles, a 9S18 target detection station, a 9S470 command post and a 9A39 charging unit. In 1977, testing of the new air defense system began, which continued until 1979. The tests were successful, and the complex was put into service. It received the designation "Buk-1".

The new anti-aircraft missile system was intended to combat air targets at low and medium altitudes (25-18,000 meters) and at a range of 3 to 25 kilometers. The probability of hitting the target was 0.6. All elements of the complex are placed on unified tracked vehicles with increased cross-country ability.

Almost immediately after the 9K37 air defense system was put into service, work began on its modernization in 1979. They were completed in 1982, in the same year they successfully conducted tests and the modernized Buk-M1 air defense system was put into service. The new anti-aircraft missile system has had a number of basic characteristics significantly improved. The affected area was significantly increased, the probability of hitting cruise missiles and helicopters increased, and it became possible to recognize targets. In addition, the Buk-M1 has become much less vulnerable to anti-radar missiles.

The next stage of modernization of the Buk air defense system occurred in the early 90s of the last century. The anti-aircraft complex was equipped with a new 9M317 anti-aircraft missile, which had much more “advanced” characteristics compared to its predecessor (although the complex can also be armed with the standard 9M38M1 missile for the Buk). This missile hit air targets at an altitude of up to 25 kilometers and at a range of up to 50. The new anti-aircraft missile system was designated 9K37M1-2 “Buk-M1-2”. Work on the air defense system took place from 1993 to 1996. In 1998, the Buk-M1-2 was adopted by the Russian army. Also, the Buk-M1-2 complex provides for the introduction of a new component - a special vehicle with a radar used to illuminate targets and guide missiles. In this case, the radar antenna is located on a telescopic lift, which raises it to a height of 22 meters. This additional element significantly increases the effectiveness of the air defense system, especially against low-flying, high-speed targets (cruise missiles).

Since the mid-80s, work has been in full swing on another modification of the Buk complex, which was supposed to be able to fire at 24 air targets and have a much larger destruction radius (up to 50 kilometers). This modification was called 9K317 Buk-M2. This modification was also planned to be equipped with the 9M317 missile. In the 90s, tests of the new complex were carried out, however, due to the difficult situation in the country and in the Russian economy, it never went into production. Only fifteen years later, the Buk-M2 was finalized and began to be delivered to the troops only in 2008.

Currently, work is underway on the next modification of the legendary air defense system - 9K317M Buk-M3. It will be able to track and engage up to 36 targets simultaneously. They plan to equip the complex with a new missile with a radar guidance system. The complex will be able to operate successfully in conditions of strong electronic countermeasures. The new anti-aircraft missile system is planned to be put into service in 2015.

Description of the Buk anti-aircraft missile system

The Buk-M1 air defense system is designed to destroy army, tactical and strategic aviation aircraft, fire support helicopters, cruise missiles and unmanned aerial vehicles. This complex is capable of effectively resisting massive raids by enemy aircraft and reliably covering troops or military-industrial facilities. This complex can successfully operate under electronic jamming conditions and in any weather conditions. The Buk-M1 air defense system has a circular radius of destruction of targets.

One Buk battery consists of six self-propelled firing systems, three charging vehicles, a target acquisition station and a command post. The GM-569 tracked chassis is used as the base for all vehicles of the complex. It provides the Buks with high maneuverability, maneuverability and speed of deployment of the complex. All systems of the complex have an autonomous power supply.

The command post (CP) of the Buk complex is designed to control the operation of the complex. Can operate in conditions where the enemy actively uses electronic interference. The command post can process information about 46 air targets; it provides reception and processing of data from six fire control systems and a target detection station, as well as from other air defense units. The command post identifies air targets, determines the most dangerous of them and assigns a task to each SDA.

The target acquisition station (TDS) is a 9S18 “Dome” radar operating in the centimeter range, capable of detecting air targets at an altitude of up to 20 and a range of up to 120 kilometers. The station has a high level of noise immunity.

The Buk-M1 self-propelled firing system (SOU) is equipped with four missiles and a 9S35 centimeter-range radar. The self-propelled gun is designed to search, track and destroy air targets. The installation contains a digital computer complex, communication and navigation equipment, a television-optical sight, and an autonomous life support system. The SOU can operate autonomously, without being tied to a command post or target detection station. True, in this case the affected area is reduced to 6-7 degrees in angle and 120 degrees in azimuth. The SOU can perform its functions in conditions of radio-electronic interference.

The charging installation of the Buk complex can store, transport and load eight missiles.

The complex is armed with a 9M38 anti-aircraft solid-fuel single-stage missile. It has a radar guidance system with a semi-active operating principle and a high-explosive fragmentation warhead. At the initial stage of the flight, correction is carried out by radio signals, and at the final stage - due to homing.

To destroy air targets, a warhead weighing 70 kilograms is used, which is detonated using a proximity fuse 17 meters from the target. The damaging elements of a missile are the shock wave and fragments. The length of the rocket is 5.5 meters, its largest diameter is 860 mm, and the total weight is 685 kilograms. The rocket is equipped with a solid propellant engine operating in two modes, with a total operating time of 15 seconds.

Specifications

Damage zone, km:
- range
- height
- parameter
3,32..35
0,015..20-22
until 22
Probability of target hit
- fighter type
- helicopter type
- cruise missile type
0,8..0,95
0,3..0,6
0,4..0,6
Maximum target speed m/s 800
Reaction time, s: 22
SAM flight speed, m/s 850
Rocket mass, kg 685
Weight of warhead, kg 70
Channel by target 2
SAM channel 3
Expansion (collapse) time, min 5
Number of missiles on a combat vehicle 4

At the moment, more than ten countries are armed with the Buk air defense system of various modifications. Negotiations are currently underway with several other countries. There are several export versions of the complex. Further work is being carried out to modernize it.

Operator's position of the Buk air defense system

Operator's position of the Buk air defense system

The multifunctional, highly mobile, medium-range anti-aircraft missile system (SAM) "Buk-M1-2" (the latest modernization of the "Buk" SAM system) is designed to destroy modern and promising strategic and tactical aircraft, cruise missiles, helicopters and other aerial aerodynamic objects in their entire range practical application in conditions of intense radio countermeasures, as well as for combating tactical ballistic missiles of the "Lance" type, anti-radar missiles of the "Kharm" type, other elements of air- and ground-based precision weapons in flight and hitting surface and ground-based radio-contrast targets. The anti-aircraft missile system can be used for air defense of troops, military facilities, important administrative-industrial and other territories (centers) with the massive use of air attack weapons, and can also be a tactical missile defense module.

The complex adopted a combined method of missile guidance - inertial guidance with radio correction in the initial guidance section and semi-active homing in the final guidance section.

The Buk-M1-2 air defense system includes combat assets, technical support equipment and training equipment.

The combat equipment includes:

Command post (CP) 9S470M1-2;

Target detection radar (SOC) 9S18M1-1;

Up to six self-propelled firing systems (SOU) 9AZ10M1-2;

Up to six launch-loading units (PZU) 9A39M1;

Anti-aircraft guided missiles (SAM) 9M317.

The technical support includes:

Maintenance vehicle (MTO) 9V881M1-2 with spare parts trailer 9T456;

Maintenance workshop (MTO) AGZ-M1;

Repair and maintenance machines (workshops) (MRTO): MRTO-1 9V883M1; MRTO-2 9V884M1; MRTO-3 9V894M1;

Transport vehicle (TM) 9T243 with a set of technological equipment (KTO) 9T3184;

Automated control and testing mobile station (AKIPS) 9V95M1;

Missile repair machine (workshop) 9T458;

Unified compressor station UKS-400V;

Mobile power station PES-100-T/400-AKR1.

Educational and training tools include:

9M317UD operational training missile;

Training missile 9M317UR.

All combat assets of the complex are assembled on all-terrain tracked self-propelled vehicles equipped with communications equipment, orientation and navigation equipment, their own gas turbine power supply units, personnel protection and life support systems, which ensures their high maneuverability and autonomy during combat operations.

The 9S470M1-2 command post is designed for automated control of combat operations of air defense systems via telecode (radio or wire) communication channels and works together with one SOC 9S18M1-1, six SOU 9A310M1-2 and ensures mutual work with a higher command post for automated control of combat operations of the Buk air defense system -M1-2".

The control panel equipment, consisting of a digital computer system, information display tools, operational command communications and data transmission and other auxiliary systems, allows you to optimize the air defense missile system control process, automatically assign operating modes, provide processing of up to 75 radar marks, and automatically track up to 15 routes of the most dangerous targets, solve target distribution and target designation problems, provide complex modes of paired operation of the SOU ("Radiation Regulation", "Alien Illumination", "Triangulation", "Coordinate Support", "Launcher"), which are used in conditions of the enemy using strong anti-radar missiles radio countermeasures and in case of failure of the radar of one of the control systems, as well as documenting the processes of combat work, monitoring the functioning of the complex’s combat assets and simulating the air situation for conducting training of the command post crew.

SOC 9S18M1-1 is designed to detect, identify the nationality of targets and transmit information about the air situation in the form of marks from targets and bearings to jammers at the 9S470M1-2 command post of the Buk-M1-2 air defense system and other control points of the air defense forces.

The SOC is a three-dimensional radar of the centimeter wave range, built on the basis of a waveguide array with electronic scanning of the beam pattern in elevation and mechanical rotation of the antenna in azimuth. The indicator range of the SOC is 160 km.

The SOC implements two possibilities for viewing space:

- “regular” - in anti-aircraft defense mode;

- "sector" - in missile defense mode.

The main element of the air defense system is the SOU 9A310M1-2. In terms of its functional purpose, it is a radar station for detecting, tracking a target, illuminating a target and a missile with a ground-based radar interrogator, a television optical target sight and a launcher with four missiles, combined into a single product controlled through a digital computer system.

The SOU provides solutions to the following tasks:

Reception of target designation and control signals from PBU 9S470M1-2;

Detection, identification of nationality, target acquisition and tracking, recognition of the class of air, surface or ground targets, illumination of them and missiles;

Determining the coordinates of tracked targets, developing a flight mission for missiles and solving other pre-launch tasks;

Pointing the launcher in the direction of the pre-empted meeting point of the missile with the target;

Issuance of target designation to the radar homing head of the missile defense system;

Missile launch;

Development of radio correction commands and transmission of them to flying missiles;

Transferring to the 9A39M1 ROM the signals necessary to point the ROM launcher in the direction of the lead point, pointing the radar homing head of the missile defense system at the target and launching it;

Transferring information to the command post about the target being tracked and about the process of combat work;

Combat crew training.

The SOU can perform these tasks both as part of an air defense system during target designation with a command post, and autonomously in the sector of responsibility. In this case, missiles can be launched either directly from the SDA or from the ROM launcher.

When operating as part of an air defense system and controlled from a command post, the self-propelled gun can be used as a launcher, in firing mode with “alien illumination” and take part in solving the problem of coordinate support by the complex.

The 9A39M1 launcher is designed for:

Transportation and storage of missiles, with four missiles located on the launcher guides and ready for launch, and four combat-ready missiles on transport supports;

Loading and self-loading of self-propelled guns with missiles located on transport supports of the base, transport vehicle, ground cradles or containers;

Monitoring the serviceability of ROM and missiles, both on command from the SOU and autonomously;

Pre-launch preparation and sequential launch of missiles according to SOU data.

To solve these problems, the ROM includes a launcher for four missiles with an electro-hydraulic power tracking drive and launch automatic equipment, four transport supports for storing missiles, an analog computer, a lifting unit (up to 1000 kg) and other equipment.

The 9M317 missiles are designed to destroy the entire class of aerodynamic targets, tactical ballistic missiles, elements of precision weapons, radar-contrast surface and ground targets. The rocket is made according to a normal aerodynamic design with a low aspect ratio trapezoidal wing with a single-stage dual-mode solid propellant jet engine.

The missile is aimed at the target using a semi-active homing system using the proportional navigation method.

To increase the accuracy of guidance, at the initial stage, pseudo-inertial control is organized along the radio correction line - the flight mission in the on-board missile defense computer is adjusted depending on changes in the movement characteristics of the target being fired by radio commands transmitted in the target and missile illumination signals.

The missile is delivered to the consumer fully assembled and equipped. Normal operation and combat use of missiles is ensured at any time of the year and day in various weather and climatic conditions for ten years.

The main tactical unit of the Buk-M1-2 air defense system, capable of independently performing combat missions, is a separate anti-aircraft missile regiment (OSRP) or an anti-aircraft missile division (ZRDN).

The unit includes a command post 9S470M1-2, SOC 9S18M1-1, communications equipment, three anti-aircraft missile batteries (two SOU 9A310M1-2 and one or two ROM 9A39M1 in each), a technical battery and a maintenance and repair unit.

A separate air defense missile system is usually part of a motorized rifle (tank) division (brigade), and an air defense missile system is part of an anti-aircraft missile brigade (up to 4-6 air defense missile systems, command post, technical battery and maintenance and repair units) of the army (army corps).

An anti-aircraft missile division (regiment), armed with a Buk-M1-2 air defense system, can perform air defense tasks for military formations and units in all types of combat operations and the most important objects (territories) of the troops and the country, simultaneously firing up to six aerodynamic targets or up to six ballistic missiles with a launch range of up to 140 km, or fire at six surface or ground targets. At the same time, the division (regiment), as a tactical missile defense module, provides coverage of an area of ​​​​about 800 - 1200 km2.

The anti-aircraft missile brigade command post uses the Polyana-D4M1 automation system.

The Buk anti-aircraft missile system in the Buk-1 variant, consisting of the SOU 9A38 and the 9M38 missile defense system, was adopted by the Air Defense Forces of the North in 1978.

The fully equipped Buk air defense system was put into service in 1980, went through several phases of modernization and was put into service under the code of the Buk M1 air defense system in 1983, and the Buk-M1-2 air defense system in 1998.

The Buk air defense system and its modifications are in service with the Armed Forces of the Russian Federation, CIS countries and have been supplied to a number of non-CIS countries.

In addition to the standard configuration of the Buk-M1-2 air defense system, Russian industry has the ability to:

Supply special asphalt shoes for the caterpillar tracks of the complex's combat vehicles, which ensure the movement of air defense systems on asphalt roads;

Install an objective control system (SOK) for the operation of air defense missile systems by registering, remembering, storing and reproducing SOU-ZUR-PZU exchange information.

Main characteristics:

"Beech"

"Buk-M1"

"Buk-M1-2"

Types of targets hit

aircraft

airplanes, helicopters, cruise missiles

airplanes, helicopters, cruise missiles, Lance-type TBRs, Kharm-type missile launchers, surface and ground targets

Damage zone for aerodynamic targets, km:

by range

by exchange rate parameter

Damage zone of tactical ballistic missiles of the "Lance-2" type, km:

far border

maximum height

Firing range at surface targets, km

Firing range at ground targets, km

Maximum speed of targets hit, m/s

Number of simultaneously fired targets by one air defense system

Probability of being hit by one missile:

aerodynamic purposes

tactical ballistic missiles

Harm-type anti-radar missiles

cruise missiles

not lower than 0.4

not lower than 0.4

Reaction time, s

Deployment time, min.

Time of transition from standby mode to combat mode, s

Loading time of the self-propelled gun, min.

Army self-propelled anti-aircraft missile system "Buk"(GRAU index - 9K37) is designed to destroy, under conditions of intense radio countermeasures, aerodynamic targets flying at speeds up to 830 m/s at low and medium altitudes (from 30 m to 14-18 km), at ranges up to 30 km, maneuvering from overloads up to 12 units.

The development of the Buk complex began in accordance with the Decree of the Central Committee of the CPSU and the Council of Ministers of the USSR dated January 13, 1972, it provided for the use of cooperation between manufacturers and developers, the main structure corresponding to that previously involved in the creation of the Kub anti-aircraft missile system. At the same time, they determined the development of the M-22 (“Hurricane”) anti-aircraft missile system for the Navy using an anti-aircraft guided missile, integrated with the Buk air defense system.

The developer of the Buk complex as a whole was identified as NIIP (Research Institute of Instrument Engineering) NKO (research and design association) Phazotron (general director Grishin V.K.) MRP (formerly OKB-15 GKAT). Chief designer of the 9K37 complex - Rastov A.A., CP (command post) 9S470 - Valaev G.N. (then - Sokiran V.I.), SOU (self-propelled firing installations) 9A38 - Matyashev V.V., semi-active Doppler seeker 9E50 for anti-aircraft guided missiles - Akopyan I.G.
PZU (start-loading unit) 9A39 was created at the MKB (Machine-Building Design Bureau) "Start" MAP (formerly SKB-203 GKAT), headed by A.I. Yaskin.

The unified tracked chassis for the complex's vehicles was developed by OKB-40 MMZ (Mytishchi Machine-Building Plant) of the Ministry of Transport Engineering under the leadership of N.A. Astrov.

The development of 9M38 missiles was entrusted to SMKB (Sverdlovsk Machine-Building Design Bureau) "Novator" MAP (former OKB-8) headed by L.V. Lyulev, refusing to involve the design bureau of plant No. 134, which had previously developed a guided missile for the "Cube" complex.

SOC 9S18 (detection and target designation station) (“Dome”) was developed at the NIIIP (Scientific Research Institute of Measuring Instruments) of the Ministry of Radio Industry under the leadership of Vetoshko A.P. (later - Shchekotova Yu.P.). A set of technical tools was also developed for the complex. provision and maintenance on the automobile chassis. Completion of the development of the anti-aircraft missile system was planned for the second quarter of 1975.

To quickly strengthen the air defense of the main striking force of the Army - tank divisions - with increasing the combat capabilities of the "Cube" anti-aircraft missile regiments included in these divisions, by doubling the channel capacity for targets (and, if possible, ensuring complete autonomy of the channels during work from target detection to its destruction), it was prescribed to carry out the creation of the Buk air defense system in 2 stages:

- First step provided for the introduction into the 2K12 “Kub-M3” complex of a 9A38 self-propelled firing system with 9M38 missiles in each battery. In this form, the 2K12M4 “Kub-M4” air defense system was adopted for service in 1978;

- second phase assumed the full adoption of the entire complex consisting of the 9S18 detection station, the 9S470 command post, the 9A310 self-propelled firing system, the 9A39 launcher-loader and the 9M38 missile defense system. Joint testing of the complex began at the Emba training ground in November 1977 and continued until March 1979, after which the complex was put into service in its entirety.

For the Buk-1 complex, it was planned to include a Kub-M3 regiment in each anti-aircraft missile battery (5 pieces), in addition to one SURN and 4 self-propelled launchers, to introduce a 9A38 self-propelled firing system from the Buk missile system. Thus, thanks to the use of a self-propelled firing system, the cost of which was about 30% of the cost of the rest of the battery, the number of combat-ready anti-aircraft guided missiles in the Kub-M3 regiment increased from 60 to 75, and target channels - from 5 to 10.

The 9A38 self-propelled firing system, mounted on the GM-569 chassis, seemed to combine the functions of the SURN and the self-propelled launcher used as part of the Kub-M3 complex. The self-propelled firing installation provided search in the established sector, detected and captured targets for automatic tracking, solved pre-launch tasks, launched and homing 3 missiles (3M9M3 or 9M38) located on it, as well as 3 3M9M3 guided missiles located on the 2P25M3 self-propelled launcher, coupled with her. The combat operation of the fire installation was carried out both autonomously and under control and target designation from the SURN.

The 9A38 self-propelled firing system consisted of:
— digital computing system;
- Radar 9S35;
— a starting device equipped with a power servo drive;
— television-optical viewfinder;
— ground-based radar interrogator operating in the “Password” identification system;
— telecode communication equipment with SURN;
— wire communication equipment with SPU;
— autonomous power supply systems (gas turbine generator);
— navigation, topographical reference and orientation equipment;
- life support systems.

The weight of the self-propelled firing system, including the weight of the combat crew consisting of four people, was 34 tons.

The progress that has been made in the creation of ultra-high-frequency devices, electromechanical and quartz filters, and digital computers has made it possible to combine the functions of target detection, illumination and target tracking stations in the 9S35 radar. The station operated in the centimeter wavelength range, it used a single antenna and two transmitters - continuous and pulsed radiation.

The first transmitter was used to detect and automatically track a target in a quasi-continuous mode of radiation or, in case of difficulties with unambiguous determination of range, in a pulse mode with pulse compression (linear frequency modulation is used). The continuous radiation transmitter was used to illuminate targets and anti-aircraft guided missiles. The station's antenna system carried out a sector search using the electromechanical method, target tracking in range and angular coordinates was carried out using the monopulse method, and signal processing was carried out by a digital computer.

The width of the antenna pattern of the target tracking channel in azimuth was 1.3 degrees and in elevation - 2.5 degrees, the illumination channel - in azimuth - 1.4 degrees and in elevation - 2.65 degrees. The search sector review time (in elevation - 6-7 degrees, in azimuth - 120 degrees) in autonomous mode - 4 seconds, in control mode (in elevation - 7 degrees, in azimuth - 10 degrees) - 2 seconds.

The average transmitter power of the target detection and tracking channel was: in the case of using quasi-continuous signals - at least 1 kW, in the case of using signals with linear frequency modulation - at least 0.5 kW. The average power of the target illumination transmitter is at least 2 kW. The noise figure of the station's direction-finding and surveillance receivers is no more than 10 dB. The transition time of the radar station between standby and combat modes was less than 20 seconds.

The station could unambiguously determine the speed of targets with an accuracy of -20 to +10 m/s; ensure selection of moving targets. The maximum range error is 175 meters, the root-mean-square error in measuring angular coordinates is 0.5 d.u. The radar station was protected from passive, active and combined interference. The equipment of the self-propelled firing system was used to block the launch of an anti-aircraft guided missile when accompanied by a helicopter or aircraft.

The 9A38 self-propelled firing system was equipped with a launcher with replaceable guides, designed for 3 3M9M3 guided missiles or 3 9M38 guided missiles.

The 9M38 anti-aircraft missile used a dual-mode solid propellant engine(total operating time was about 15 seconds). The use of a ramjet engine was abandoned not only due to the high resistance in passive sections of the trajectory and instability of operation at a high angle of attack, but also because of the complexity of its development, which largely determined the delay in the creation of the Kub air defense system. The power structure of the engine chamber was made of metal.

The general design of an anti-aircraft missile is X-shaped, normal, with a low aspect ratio wing. The appearance of the missile resembled American-made naval anti-aircraft missiles of the Standard and Tartar families. This corresponded to strict restrictions on overall dimensions when using 9M38 anti-aircraft guided missiles in the M-22 complex, which was developed for the USSR Navy.

The rocket was carried out according to the normal design and had a low aspect ratio wing. In the front part, a semi-active hydrodynamic pump, autopilot equipment, power supply and warhead are sequentially located. To reduce the spread of alignment over flight time, the combustion chamber of the solid propellant rocket engine was placed closer to the middle, and the nozzle block was equipped with an elongated gas duct, around which the steering drive elements are located. The rocket has no parts that separate during flight. The diameter of the 9M38 rocket is 400 mm, length - 5.5 m, rudder span - 860 mm.

The diameter of the front compartment (330 mm) of the rocket was smaller in relation to the tail compartment and engine, which is determined by the continuity of some elements with the 3M9 family. The missile was equipped with a new homing head with a combined control system. The complex implemented homing of an anti-aircraft guided missile using the proportional navigation method.

The 9M38 anti-aircraft guided missile ensured the destruction of targets at altitudes from 25 m to 20 km at a range of 3.5 to 32 km. The rocket's flight speed was 1000 m/s and maneuvered with overloads of up to 19 units. The weight of the rocket is 685 kg, including a 70 kg warhead.

The design of the missile ensured its delivery to the troops in a fully equipped form in the 9YA266 transport container, as well as operation without routine maintenance and inspections for 10 years.

From August 1975 to October 1976, the Buk-1 anti-aircraft missile system, consisting of the 1S91M3 SURN, the 9A38 self-propelled firing system, the 2P25M3 self-propelled launchers, the 9M38 and 3M9M3 anti-aircraft guided missiles, as well as the 9V881 MTO (maintenance vehicle) underwent state testing Embensky training ground.

As a result of the tests, the detection range of aircraft by a radar station of a self-propelled firing system operating in autonomous mode at altitudes of more than 3 thousand m was obtained - from 65 to 77 km; at low altitudes (from 30 to 100 meters) the detection range decreased to 32-41 km. Detection of helicopters at low altitudes occurred at a range of 21-35 km.

When operating in a centralized mode, due to the limited capabilities of the SURN 1S91M2 issuing target designation, the detection range of aircraft at altitudes of 3-7 km was reduced to 44 km and targets at low altitudes - to 21-28 km. In autonomous mode, the operating time of a self-propelled firing system (from the moment of target detection to the launch of a guided missile) was 24-27 seconds. The loading/discharging time for three 9M38 or 3M9M3 anti-aircraft guided missiles was 9 minutes.

When firing a 9M38 anti-aircraft guided missile, the destruction of an aircraft flying at altitudes of more than 3 thousand m was ensured at a range of 3.4-20.5 km, at an altitude of 30 m - 5-15.4 km. The affected area in height is from 30 meters to 14 kilometers, in terms of the heading parameter - 18 km. The probability of hitting an aircraft with one 9M38 guided missile is 0.70-0.93.

The complex was put into service in 1978. Since the 9A38 self-propelled firing system and the 9M38 anti-aircraft guided missile were means complementary to the Kub-M3 anti-aircraft missile system, the complex was given the name “Kub-M4” (2K12M4). The Kub-M4 complexes, which appeared in the air defense forces of the Ground Forces, made it possible to significantly increase the effectiveness of the air defense of tank divisions of the SV SA.

The combat assets of the Buk anti-aircraft missile system had the following characteristics.

Command post 9S470 installed on the GM-579 chassis provided:
— receiving, displaying and processing target data coming from the 9S18 station (detection and target designation station) and 6 9A310 self-propelled firing systems, as well as from higher command posts;

— selection of dangerous targets and their distribution between self-propelled firing systems in automatic and manual modes, assignment of sectors of their responsibility;

— display of information about the presence of anti-aircraft guided missiles on firing and launch-loading installations, about the letters of the illumination transmitters for firing installations, about work on targets, about the operating mode of the detection and target designation station;

— organizing the operation of the complex in the event of interference and the use of anti-radar missiles;

— documentation of training and work of calculation of CP.

The command post processed messages about 46 targets located at altitudes of up to 20 km in a zone with a radius of 100 km per station review cycle and issued up to 6 target designations for self-propelled firing systems (accuracy in elevation and azimuth - 1 degree, in range - 400-700 meters ). The weight of the command post, including a combat crew of 6 people, is no more than 28 tons.

Coherent-pulse three-coordinate detection and target designation station “Dome” (9С18) centimeter range having electronic scanning of the beam according to the elevation angle in a sector (set to 30 or 40 degrees) with mechanical (in a given sector or circular) rotation of the antenna in azimuth (using a hydraulic drive or an electric drive). The Kupol station was intended to detect and identify air targets at a range of up to 110-120 kilometers (at an altitude of 30 meters - 45 kilometers) and transmit information about the air situation to the 9S470 command post.

Depending on the presence of interference and the established sector in elevation, the speed of viewing the space during a circular view was 4.5 - 18 seconds and when viewing in a 30-degree sector 2.5 - 4.5 seconds. Radar information was transmitted to the 9S470 command post via a telecode line in the amount of 75 marks during the review period (4.5 seconds). Root mean square errors in measuring target coordinates: in elevation and azimuth - no more than 20′, in range - no more than 130 m, resolution in elevation and azimuth - 4 degrees, in range - no more than 300 m.

All station equipment was placed on a modified self-propelled chassis of the SU-100P family. The tracked base of the detection and target designation station differed from the chassis of other means of the Buk anti-aircraft missile system, since the Kupol radar station was initially intended to be developed outside the anti-aircraft complex - as a means of detecting the divisional air defense unit of the Ground Forces.

The time it took to transfer the Kupol station between traveling and combat positions was up to 5 minutes, and from duty to operating mode - about 20 seconds. The weight of the station (including a crew of 3 people) is up to 28.5 tons.

According to its structure and purpose self-propelled firing system 9A310 It differed from the 9A38 self-propelled firing system of the Kub-M4 (Buk-1) anti-aircraft missile system in that it communicated using a telecode line not with SURN 1S91M3 and self-propelled launcher 2P25M3, but with the command post 9S470 and PZU 9A39. Also, on the launcher of the 9A310 installation there were not three, but four 9M38 anti-aircraft guided missiles. The time it took to transfer the installation from traveling to combat position was less than 5 minutes. The time to transfer from standby mode to operating mode, in particular, after changing position with the equipment turned on, was up to 20 seconds.

Loading the 9A310 firing system with four anti-aircraft guided missiles from the launch-loading installation took 12 minutes, and from a transport vehicle - 16 minutes. The mass of the self-propelled firing system, including a combat crew of 4 people, was 32.4 tons. The length of the self-propelled firing system is 9.3 m, width - 3.25 m (in working position - 9.03 m), height - 3.8 m (in working position - 7.72 m).

Launch-loading installation 9A39 installed on the GM-577 chassis was intended for transporting and storing 8 anti-aircraft guided missiles (on the launcher - 4, on fixed mounts - 4), launching 4 guided missiles, self-loading its launcher with four missiles from the cradle, self-loading the 8th missile defense system from a transport vehicle (charging time 26 minutes), from ground cradles and transport containers, discharge and on the launcher of a self-propelled firing system with 4 anti-aircraft guided missiles.

Thus, the launch-loading installation of the Buk anti-aircraft missile system combined the functions of the TZM and the self-propelled launcher of the Kub complex. The launch-loading installation consisted of a starting device with a servo power drive, a crane, supports, a digital computer, equipment for topographical referencing, navigation, telecode communication, orientation, power supply and energy supply units. The mass of the installation, including a combat crew of 3 people, is 35.5 tons. Dimensions of the launch-loading installation: length - 9.96 m, width - 3.316 m, height - 3.8 m.

The complex's command post received data on the air situation from the command post of the Buk anti-aircraft missile brigade (automated control system Polyana-D4) and from the detection and target designation station, processed it and issued instructions to self-propelled firing units that carried out search and capture for automatic tracking goals. When the target entered the affected area, anti-aircraft guided missiles were launched.

For missile guidance, the proportional navigation method was used, which ensured high guidance accuracy. When approaching the target, the homing head issued a command to the radio fuse for close arming. When approaching a distance of 17 meters, upon command, the warhead was detonated. If the radio fuse failed to operate, the anti-aircraft guided missile self-destructed. If the target was not hit, a second missile was launched at it.

Compared to the Kub-M3 and Kub-M4 anti-aircraft missile systems The Buk air defense system had higher operational and combat characteristics and provided:
— simultaneous firing of up to 6 targets by a division, and, if necessary, execution of up to 6 independent combat missions in the case of autonomous use of self-propelled firing systems;
- greater detection reliability thanks to the organization of a joint survey of the space by 6 self-propelled firing systems and a detection and target designation station;
— increased noise immunity due to the use of a special type of illumination signal and an on-board computer for the homing head;
- greater efficiency in hitting targets due to the increased power of the warhead of the anti-aircraft guided missile.

Based on the results of tests and modeling, it was determined that the Buk anti-aircraft missile system can fire at non-maneuvering targets flying at altitudes from 25 meters to 18 km at speeds up to 800 m/s, at ranges from 3–25 km (at speeds up to 300 m /s - up to 30 km) with a heading parameter of up to 18 km with the probability of being hit by one guided missile - 0.7-0.8. When firing at maneuvering targets (overload up to 8 units), the probability of defeat was 0.6.

The Buk complex was adopted by the ground forces' air defense forces in 1980. Serial production of combat weapons of the Buk complex was mastered in the cooperation involved in the Kub-M4 air defense system. New equipment - KP 9S470, self-propelled firing systems 9A310 and detection and target designation stations 9S18 - were produced by the Ulyanovsk Mechanical Plant MRP, launch-loading installations 9A39 - at the Sverdlovsk Machine-Building Plant named after. Kalinina.

MODERNIZATION OF THE BUK ADAM

In accordance with the Resolution of the USSR Council of Ministers dated November 30, 1979, the Buk anti-aircraft missile system was modernized to increase its combat capabilities and the protection of the complex's radio-electronic equipment from anti-radar missiles and interference.

As a result of tests that were carried out in February-December 1982 at the Emba test site, it was found that modernized Buk-M1 compared to the Buk anti-aircraft missile system, it provides a larger engagement area for aircraft, can shoot down an ALCM cruise missile with a probability of being hit by one guided missile of more than 0.4, Hugh-Cobra helicopters - 0.6-0.7, hovering helicopters - 0.3-0.4 at ranges from 3.5 to 10 km.

The self-propelled firing system uses 72 letter illumination frequencies instead of 36, which helps to increase protection from intentional and mutual interference. Recognition of 3 classes of targets is provided - ballistic missiles, airplanes, helicopters.

Compared to the 9S470 command post, the 9S470M1 KP provides simultaneous reception of data from its own detection and target designation station and about 6 targets from the air defense control post of a tank (motorized rifle) division or from the army air defense command post, as well as comprehensive training for crews of anti-aircraft missile systems.

Compared to the 9A310 self-propelled firing system, the 9A310M1 installation provides target detection and acquisition for automatic tracking at long ranges (approximately 25-30%), as well as recognition of ballistic missiles, helicopters and aircraft with a probability of more than 0.6.

The complex uses a more advanced detection and target designation station “Kupol-M1” (9S18M1), which has a flat elevation phased antenna array and a GM-567M self-propelled tracked chassis. The same type of tracked chassis is used at the command post, self-propelled firing installation and launch-loading installation.

The Buk-M1 complex provides for effective technical and organizational measures for protection against anti-radar missiles. The combat assets of the Buk-M1 air defense system are interchangeable with similar weapons of the Buk complex without modifications. The standard organization of technical units and combat formations is similar to that of the Buk anti-aircraft missile system.

The Buk-M1 complex was adopted by the Air Defense Forces of the Ground Forces in 1983. and its serial production was established in cooperation between industrial enterprises that produced the Buk anti-aircraft missile system. In the same year, the Navy's M-22 Uragan anti-aircraft missile system, unified with the Buk complex for 9M38 guided missiles, also entered service. Complexes of the Buk family called “Gang” were proposed to be supplied abroad.

During the Defense 92 exercise, the Buk family of anti-aircraft missile systems successfully fired at targets based on the R-17 and Zvezda ballistic missiles and the Smerch MLRS missile.

Cooperation of enterprises led by Tikhonravov Research Institute in 1994-1997, work was carried out on the Buk-M1-2 anti-aircraft missile system. Thanks to the use of the new 9M317 missile and the modernization of other air defense systems, for the first time it was possible to destroy Lance tactical ballistic missiles and aircraft missiles at a range of up to 20 km, elements of precision weapons and surface ships at a range of up to 25 km and ground targets (large command posts, launch sites installations, aircraft at airfields) at a distance of up to 15 km.

The effectiveness of destroying cruise missiles, helicopters and aircraft has increased. The boundaries of the affected zones in range increased to 45 km and in height - up to 25 km. The new missile provides for the use of an inertial-corrected control system with a radar semi-active homing head with guidance using the proportional navigation method. The rocket has a launch mass of 710-720 kg with a warhead mass of 50-70 kg. Externally, the new 9M317 missile differed from the 9M38 in its shorter wing chord length.

In addition to the use of an improved missile, it was planned to introduce a new means into the air defense system - a radar station for illuminating targets and guiding missiles with the installation of an antenna at a height of up to 22 meters in the working position (a telescopic device was used). With the introduction of this radar station, the combat capabilities of the air defense system to destroy low-flying targets, such as modern cruise missiles, are significantly expanded.

The Buk-M1-2 complex includes a command post and two types of firing sections:
— four sections, including one modernized self-propelled firing unit each, carrying four guided missiles and capable of firing four targets simultaneously, and a launcher-loading unit with 8 guided missiles;
— two sections, including one illumination and guidance radar station, which can also provide simultaneous fire at four targets, and two launch-loading installations (each with eight guided missiles).

Two versions of the complex were developed - mobile on GM-569 tracked vehicles (used in previous modifications of the Buk air defense system), as well as transported by KrAZ vehicles and on road trains with semi-trailers. In the latter option, the cost was reduced, but maneuverability deteriorated and the deployment time of the anti-aircraft missile system from the march increased from 5 minutes to 10-15 minutes.

In particular, the Start MKB, during the modernization of the Buk-M air defense system (Buk-M1-2, Buk-M2 complexes), developed the 9A316 launcher-loader and the 9P619 launcher on a tracked chassis, as well as PU 9A318 on a wheeled chassis.

The process of development of the Kub and Buk families of anti-aircraft missile systems as a whole represents an excellent example of the evolutionary development of military equipment and weapons, ensuring a continuous increase in the air defense capabilities of the ground forces at relatively low costs. This path of development, unfortunately, creates the preconditions for a gradual technical lag.

For example, even in promising versions of the Buk air defense system, the more reliable and safe scheme for continuous operation of missile defense systems in a transport and launch container, and all-angle vertical launch of guided missiles, introduced in other second-generation air defense missile systems, have not been used. But, despite this, in difficult socio-economic conditions, the evolutionary path of development must be considered as the only possible one, and the choice made by the developers of the Buk and Kub family complexes as the correct one.

Main characteristics of the BUK type air defense system:
Name – “Buk” / “Buk-M1”;
Damage zone in range - from 3.5 to 25-30 km / from 3 to 32-35 km;
Damage zone in height – from 0.025 to 18-20 km / from 0.015 to 20-22 km;
Damage zone by parameter – up to 18 / up to 22;
The probability of hitting a fighter with one guided missile is 0.8..0.9 / 0.8..0.95;
The probability of hitting a helicopter with one guided missile is 0.3..0.6 / 0.3..0.6;
Probability of hitting a cruise missile – 0.25..0.5 / 0.4..0.6;
The maximum speed of targets hit is 800 m/s;
Reaction time - 22 seconds;
Anti-aircraft guided missile flight speed - 850 m/s;
Rocket mass – 685 kg;
Warhead weight - 70 kg;
Target channel – 2;
SAM channel (per target) – up to 3;
Expansion/collapse time – 5 minutes;
The number of anti-aircraft guided missiles on a combat vehicle is 4;
Year of adoption: 1980/1983.

/Alex Varlamik, based on materials en.wikipedia.org And topwar.ru /

Especially for “Defend Russia,” the editor-in-chief of the website and blog “Vestnik PVO” Said Aminov delved into the analysis of generations of domestic air defense systems and talked about what types of Buk anti-aircraft missile systems there are.

Unfortunately, we did not see the newest Buk-M3 air defense system in person - self-propelled firing systems and launch-loading vehicles of the Buk-M2 air defense system were in the festive columns. But the image of the Buk-M3 complex has already officially appeared not only on the corporate calendar of the Almaz-Antey Aerospace Defense Concern, but also on the cover of the book “Tikhomirov’s Constellation”, published on the 60th anniversary of the NIIP named after V.V. Tikhomirov - the developer of anti-aircraft missiles medium-range complexes.

“Buk” is, indeed, a complex that consists of a number of elements: a self-propelled firing installation, a launcher-loading installation, an air target detection radar, a command post and a number of technical vehicles. It can function successfully in the complex of these machines and devices.

Cube

NIIP was the developer of one of the mass anti-aircraft missile systems of the ground forces, the “Cube,” which was not only actively exported to allied countries of the USSR, but also underwent a baptism of fire in the Middle East in the Arab-Israeli war of 1973. As its developers note, the “Cube” air defense system (aka “Kvadrat” for export) excellently demonstrated its capabilities in that war, but its shortcomings were also revealed. During the fighting between Israel and Lebanon in the Bekaa Valley in 1982, over several days of fighting, 9 self-propelled reconnaissance and missile guidance systems (SURN) of the Syrian Kub air defense systems were destroyed by controlled air bombs.

In 1970, the USSR Ministry of Defense issued an order for the creation of a new generation complex, called “Buk”. When shaping the appearance of the new air defense system, the experience of combat use of the Cubes was taken into account. Basically, the combat effectiveness of the Kubov battery depended on one SURN 1S91, which also had restrictions on target detection altitude - 7 km. If it malfunctioned or was disabled by the enemy, all four 2P25 launchers became useless. Taking this into account, the new Buk was equipped with a self-propelled firing system with four missiles and a radar station, which not only provided target illumination, but could also monitor the airspace. In addition, a separate powerful Kupol radar station was introduced into the new complex, which had twice the detection range of air targets than in the Kub air defense system.

Another lesson from the combat use of the Kub air defense system was the fact that a Kub battery of four launchers with 12 missiles was destroyed by the enemy during the battle after the ammunition was used up, and reloading launchers with TZM2T7 in battle conditions was impossible. Therefore, as part of the new complex, it was decided to provide the ability to fire directly from the means of transporting reserve ammunition - this is how a new unit of the complex, a launch-loading vehicle, appeared. There are no analogues to it abroad. The ROM provided not only the reloading of two SDAs, but also, if necessary, could launch four missiles from its launcher, and then replenish it with four other missiles from the lower tier.

Photo: Air Defense Bulletin

The resolution on the development of the 9K37 Buk complex was adopted on January 13, 1972. At the same time, NPO Altair was given the task of creating a ship-based air defense system M-22 Uragan for the Navy using a single anti-aircraft missile with the Buk complex.

The development of the complex was carried out by NIIP. The chief designer of the Buk air defense system as a whole was A.A. Rastov, G.N. Valaev (later V.A. Rastov, then V.I. Sokiran) was responsible for the creation of the 9S470 command post, V.V. .Matyashev (hereinafter Yu.I. Kozlov), semi-active homing head 9E50 - I.G. Akopyan, missile control circuit - L.G. Voloshin, maintenance and repair vehicles - V.A. Roslov.

The launch-loading installation was created at the Start design bureau of the USSR Ministry of Aviation Industry under the leadership of A.I. Yaskin (hereinafter referred to as G.M. Murtashin). A unified tracked chassis for combat units of the complex was developed at OKB-40 of the Mytishchi Machine Plant under the leadership of N.A. Astrov (hereinafter referred to as V.V. Egorkin). The 9S18 detection and target designation radar was created at NIIIP (Novosibirsk) under the leadership of A.P. Vetoshko (then Yu.P. Shchekotov).

At the beginning, the developer of the 3M9 missile of the Kub air defense missile system, Vympel Design Bureau, carried out work on the 3 M9-M40 solid-fuel missile (chief designer A.L. Lyapin). In a short time, design and technical documentation was released, 10 missiles and a launch container mounted on an all-terrain vehicle were produced. In October-December 1965, five missile launches were carried out at site No. 1 in Faustovo (Moscow region, now GKNIPAS) with self-destruction within the test site. However, the Vympel design bureau focused its efforts on creating air-to-air missiles, and the task of creating the 9M38 missile defense system for the Buk was assigned to the Sverdlovsk Design Bureau Novator under the leadership of L.V. Lyulev. OKB Novator had experience in creating missiles for army air defense systems - the long-range (for its time) Krug air defense system was equipped with a missile created by L.V. Lyulev.

It was planned to complete work on the creation of the Buk complex in the second quarter of 1975. However, it was not possible to meet the deadline. The development of a self-propelled firing system was ahead of work on other air defense systems and on the missile. Taking into account the actual state of work on the complex, as well as the need to strengthen the air defense of the Ground Forces, it was decided to split the work on the Buk air defense system into two stages. Initially, it was planned to rapidly develop an anti-aircraft guided missile and a self-propelled firing system capable of using both the new 9M38 missiles and the old 3M9M3 missiles from the Kub-M3 complex. On this base, using other means of the Kub-M3 complex, it was planned to create a “transitional” 9K37−1 Buk-1 air defense system, which was planned to be transferred for joint testing in September 1974. The second stage involved the creation of a full-fledged Buk air defense system.

For the Buk-1 complex, it was envisaged that each of the five anti-aircraft batteries of the Kub-M3 regiment, in addition to one self-propelled reconnaissance and guidance unit and four self-propelled launchers, would have one 9A38 self-propelled firing unit. Thus, due to the introduction of a self-propelled gun into the complex, the number of target channels of the regiment increased from 5 to 10, and the number of combat-ready missiles increased from 60 to 75.

The SOU included a launching device with power tracking drives, a 9S35 radar station, supplemented by a television-optical sight with a ground-based radar interrogator, a digital computer system, telecode communication equipment with the SURN from the Kub-M3 air defense system and wired communication with the SPU. The 9A38 self-propelled firing system had a launcher with interchangeable guides for either three 3 M9 M³ missiles or three 9M38 missiles. The mass of the self-propelled gun with a combat crew of four people was 35 tons.

Technical progress in the field of microwave devices, element base, as well as digital computers made it possible to create the 9S35 radar with the functions of a detection, tracking and target illumination station. The station operated in the centimeter radio wave range.

The 9E50 radar homing head was developed for the anti-aircraft missile.

From August 1975 to October 1976, the Buk-1 complex underwent state tests at the test site near Emba. The tests were supervised by a commission headed by P.S. Bimbash.

Tests of the autonomous operating mode of a self-propelled firing system confirmed the detection range of aircraft from 65 to 77 km at altitudes above 3000 m. At low altitudes, the detection range was reduced to a range from 32 to 41 km. Helicopters located at low altitudes were detected from a distance of 21 to 35 km.

In a centralized operating mode, due to limitations in the operation of the 1S91M3 self-propelled reconnaissance and guidance system, the aircraft detection range was reduced to 44 km for altitudes from 3000 to 7000 m and to 21-28 km for low altitudes.

The operating time (the period from target detection to missile launch) of the self-propelled firing system in autonomous mode was 15-20 seconds. Reloading the complex with three 9M38 missiles takes about 15 minutes.

The destruction of aircraft at altitudes above 3000 m was ensured at a range of 3.4 to 20.5 km. The affected area ranged from 30 m to 14 km in height, and 18 km in terms of heading. The probability of an aircraft being hit by one 9M38 missile is from 0.70 to 0.93.

The complex was put into service in 1978 under the designation 2K12M4 “Kub-M4”, replacing the previously used name “Buk-1”. The reason was the fact that the SOU 9A38 and the 9M38 missile defense system are only additions to the Kub-M3 air defense system.

The Kub-M4 complexes that appeared in military air defense significantly increased the effectiveness of air defense of tank divisions of the Soviet Army Ground Forces.

Serial production of the 9A38 SOU was launched at the Ulyanovsk Mechanical Plant, and 9A38 missiles at the Dolgoprudnensky Machine-Building Plant, which previously produced 3M9 missiles.

Beech

Joint tests of the Buk complex in its regular composition were carried out from November 1977 to March 1979 at the Emba training ground. It should be noted that careful testing of the complex’s equipment during the period of autonomous testing, as well as a significant degree of continuity with the Kub-M4 air defense system, led to the fact that during the period of factory tests, as well as joint tests with the Ministry of Defense, no fundamental problems were identified. The complex fully met the specified tactical and technical requirements. In 1979, the Buk complex was adopted by the Soviet army. In 1980, the development was awarded the USSR State Prize.

The command post of the 9S470 complex, part of the Buk air defense system and located on the GM-579 chassis, ensured the reception and processing of information about targets coming from the 9S18 detection and target designation station, as well as from six 9A310 self-propelled firing systems, and from the command post of the anti-aircraft missile brigade. Beech" (" "). The command post processed messages about 46 targets moving at altitudes of up to 20 km in a zone with a radius of 100 km, per review cycle of the detection and target designation station. It provided self-propelled firing systems with up to six target indications with an accuracy of 1 degree in angular coordinates and 400-700 m in range. The work of the command post was extremely automated. All information was processed by the Argon-15 digital computer. The weight of a self-propelled command post with a combat crew of six people did not exceed 28 tons.

Three-coordinate coherent-pulse detection and target designation station (SOC) 9S18 “Dome” centimeter range with electronic scanning of the beam in a given sector by elevation angle (30 or 40 degrees) and mechanical (circular or in a given sector) rotation of the antenna in azimuth (via electrical - or hydraulic drive) was intended for detection and identification of air targets at ranges of up to 110-120 km (45 km at a target flight altitude of 30 m). The SOC ensured the transmission of radar information about the air situation to the 9S470 command post.

The 9A310 self-propelled firing system, located on the GM-568, differed in its purpose and design from the 9A38 self-propelled gun of the Kub-M4 (Buk-1) air defense system in that it was interfaced with the 9S470 CP and the 9A39 launcher-loader using a telecode line , and not with the 1S91M2 and 2P25M2 self-propelled guns developed for the Kub complex. And most importantly, the new self-propelled firing system carried not three, but already four 9M38 missiles. The time for transferring the self-propelled gun from the traveling to the combat position did not exceed 5 minutes, and from standby mode to working mode (for example, after changing position with the equipment turned on) - no more than 20 seconds. The weight of a self-propelled firing system with missiles and a crew of four did not exceed 35 tons.

The 9A39 launcher-loading unit (PZU) located on the GM-577 chassis served to transport and store eight missiles (four each on the launcher and on fixed cradle); launch of four missiles; self-loading of its launcher with four missiles from the cradle; self-loading with eight missiles from a transport vehicle; loading and unloading a self-propelled firing system with four missiles. The mass of the ROM with a crew of three people was 35.5 tons.

Compared to its predecessors Kub-MZ and Kub-M4 (Buk-1), the Buk complex achieved a significant improvement in combat and operational characteristics:

  • the division simultaneously fired at six targets and could carry out up to six independent combat missions with the autonomous use of self-propelled firing systems;
  • the joint operation of the detection and target designation station with the division’s self-propelled firing systems increased the reliability of target detection;
  • a new on-board computer for the homing head and an algorithm for generating the illumination signal have increased noise immunity;
  • The missile defense system received a warhead of increased power.

Serial production of the Buk air defense systems was carried out by the same cooperation as in the case of the Kub-M4 complex. Launch-loading installations 9A39 were produced at the Sverdlovsk Machine-Building Plant named after. M.I. Kalinin, and self-propelled firing systems 9A310, detection and target designation stations 9S18 and KP9S470 - at the Ulyanovsk Mechanical Plant.

Buk-M1

Simultaneously with the adoption of the Buk complex, its modernization began. In accordance with the resolution of the Central Committee of the CPSU and the Council of Ministers of the USSR dated November 30, 1979, work was carried out to increase its combat capabilities, the protection of its electronic equipment from interference and anti-radar missiles. The new complex was supposed to have increased destruction limits, an expanded range of targets to be hit, among which were low-altitude cruise missiles such as ALCM and Tomahawk, and hovering attack helicopters.

For the new complex, the Dolgoprudnensky Research and Production Enterprise Design Bureau has developed an improved 9M38M1 missile. At the same time, an increased flight range was provided, the duration of the inertial segment was increased, and the accuracy of guidance on a maneuvering target was improved. The 9E50M1 homing head was better adapted to flight conditions, interference conditions, and the type of target being fired upon.

A fundamentally new system for recognizing the type of target (airplane, helicopter, ballistic missile) was developed and introduced into the improved SOU 9A310M1 with the transfer of relevant information to the missile’s radio fuse to ensure the moment of optimal detonation of the warhead.

In relation to the Buk-M1, a set of measures was developed to effectively combat hovering helicopters - a very difficult target for both air defense systems and fighter aircraft. During field tests carried out in February-December 1982, it was found that the modernized Buk-M1 complex, compared to the Buk, provides a larger area of ​​destruction of aircraft, is capable of shooting down ALCM and Tomahawk cruise missiles with the probability of hitting one a missile of at least 0.4, and highly maneuverable, relatively “compact” and well-protected combat helicopters of the Hugh-Cobra type - with a probability of 0.6-0.7 at a range from 3.5 to 6-10 km.

The radar of the modernized air defense system received 32 letter frequencies of illumination (instead of 16 for the Buk), which contributed to increased protection from mutual and intentional interference.

Compared to the previous one, the SOU 9A310M1 provided target detection and acquisition at a range of up to 85 km, and automatic tracking at a range of 75 km.

The complex included a more advanced detection and target designation station 9S18M1 “Kupol-M1” with a flat angular phased array, located on the GM-567 M tracked chassis, of the same type (unlike the “Kupol” station) with other tracked vehicles of the division.

The Buk-M1 was put into service in 1983, and its mass production began in 1985.

Buk-M2 and Buk-M1−2

Simultaneously with the start of work on the minor modernization of the complex, which was implemented in the Buk-M1 air defense system, NIIP began work on a more advanced version of the Buk-M2 complex. The third generation complex provided for the creation of a multi-channel air defense system capable of simultaneously firing at up to 24 targets. This required the introduction of a radar complex with a phased antenna array (PAR) into combat equipment and the provision of intermittent illumination mode.

The new complex achieved a significant expansion of the target engagement zone in range and altitude. Thanks to the use of a phased array antenna, one self-propelled gun could simultaneously hit four targets (the Buk-M1 self-propelled gun could hit only one). The air defense missile system had greater information content, increased noise immunity and a number of other advantages that ensured its significant superiority over foreign analogues.

In addition to the improved 9M317 missile, created at the DNPP Design Bureau, and a self-propelled firing system with phased array, the complex also received a new combat weapon - a target illumination and missile guidance radar (RPN). The transmitting and receiving module of this station, also located on the GM-562 self-propelled gun, in the working position, through a special telescopic mast, rose to a height of 21 m, which significantly expanded the capabilities of the complex to combat low-flying aircraft, helicopters and cruise missiles. The range of destruction of targets flying at extremely low altitudes has increased by 1.5-2 times.

By a resolution of the Central Committee of October 18, 1990, the Buk-M2 air defense system on a tracked chassis was put into service, and the time frame for its serial development was established.

Almost immediately after, joint tests of the modernized Buk-M2−1-Ural complex, placed on a wheelbase (KrAZ all-terrain vehicles and Chelyabinsk-made trailers), intended for the country's air defense forces, were completed. According to the plan of the then Air Defense Commander-in-Chief I.M. Tretyak, the towed Ural air defense system was supposed to be integrated with type air defense systems, which was supposed to form a very effective layered system designed for the defense of large government facilities (Moscow, Leningrad and other key political and economic centers of the country) . Unfortunately, the collapse of the USSR and the sharp reduction in funding for the armed forces and industry did not allow new complexes to be launched into series.

Of the entire range of combat assets of the Buk-M2 air defense system, in the 90s only the 9M317 missile defense system was mass-produced. The missile was developed and manufactured by the Dolgoprudny Research and Production Enterprise as an interspecific missile: for the SV air defense system and for the Shtil-1 ship-based air defense system. The presence of a new missile allowed IIP to initiate the modernization of the Buk-M1 air defense system by introducing a new missile from the Buk-M2 complex. The Main Missile and Artillery Directorate of the Ministry of Defense supported the idea: carrying out such R&D with minimal use of budgetary funds made it possible to obtain a significant increase in the performance characteristics of the complex - in particular, the possibility of use not only in air defense systems, but also in tactical missile defense systems and in coastal defense.

The complex, called "Buk-M1−2", was created in the most difficult years for the defense industry, when the main task for almost all enterprises was not development and technical re-equipment, but survival in the current conditions.

Photo: Said Aminov

R&D work on the Buk-M1−2 was carried out by the previous cooperation: NIIP (General Director - V.V. Matyashev, at the final stage of development Yu.I. Bely, chief designer of the air defense system - E.A. Pigin), Ulyanovsk Mechanical Plant (General Director - V.V. Abanin), DNPP (General Director - G.P. Ezhov, General Designer - V.P. Ektov), ​​M Research Institute "Agat" (General Director and General Designer - I.G. Akopyan), NPP " Start" (general director - G. M. Muratshin), MZiK (general director - N. V. Klein).

Considering the meager state funding, the co-executing enterprises created a new complex using export proceeds from contracts for the supply of the Buk-M1 air defense system to Finland and the modernization of the Kvadrat air defense system (export name of the Kub air defense system) in Egypt. As a result, in the most difficult years for the domestic defense industry, an air defense system that was unique in its characteristics was created, which at that time had no analogues in world practice in terms of combat use capabilities. Having retained the composition of combat weapons similar to the Buk-M1 complex, the Buk-M1−2 air defense system, unlike its predecessor, ensures the destruction of tactical, ballistic and aircraft missiles, as well as firing at surface and radio-contrast ground targets.

The affected area of ​​the aerodynamic targets of the modernized air defense system has been expanded to 25 km in height and up to 42-45 km in range. The channel capacity has been doubled when hitting a target in the “coordination support” mode. The probability of hitting enemy aircraft increased from 0.80-0.85 to 0.90-0.95. The command post of the Buk-M1−2 air defense system was integrated with the control point of the short-range air defense system "", which significantly increased the effectiveness of the mixed anti-aircraft group.

It is important to note that the documentation for the modernization was made in such a way that factory brigades directly in the troops could modify the Buk-M1 to the Buk-M1−2 with a minimum of costs. In 1998, by order of the Minister of Defense No. 515 of November 21, 1998, the Buk-M1−2 air defense system was adopted by the Russian army.

Only in the early 2000s, when the defense industry began to receive the first orders, the question of mass production of the third generation Buk-M2 air defense system again arose. Unfortunately, over the past 15 years after its development, many component supply companies have ceased to exist or ended up abroad, and the element base has changed significantly. NIIP and the main manufacturer Ulyanovsk Mechanical Plant have done a tremendous amount of work to establish new cooperation, replace components and introduce new technologies and materials. For example, the basis of the complex's computing facilities was replaced from the now foreign supplier of the Argon-15 digital computer (Chisinau) to domestic Baguette-type digital computers.

As a result, the Buk-M2 air defense system began to enter service with the Russian army. Since 2008, the complex has taken part in parades on Red Square. At the same time, the Buk-M2E air defense system received high international recognition. An export contract for the supply of a complex on a tracked chassis to Syria is currently being implemented. In the process of Rosoboronexport carrying out marketing work to promote the Buk-M2E air defense system to the foreign market, several foreign customers expressed a desire to purchase systems, but not on a tracked base, but on a wheeled one. This work was carried out by NIIP jointly with UMP and NPP Start. A tractor produced by the Minsk Wheel Tractor Plant (MZKT) was chosen as the base wheeled vehicle. The wheeled version of the air defense system passed all types of tests and was delivered to the first customer - Venezuela. A number of non-CIS countries are next in line.

In 2013, the serial development of the Buk-M2 air defense system was awarded a prize from the government of the Russian Federation.

Photo: Said Aminov

Buk-M3

The decision to create a new modification of the complex, which received the Buk-M3 designation, was made by the Ministry of Defense in 1990. Defense industry enterprises were left to their own devices, and only those who could find export contracts survived. NIIP's products were well known in the world, which helped the institute survive a long period of reforms and continue new developments. The Ministry of Defense and GRAU did not stop funding, although it was insufficient. The main thing was that there was an understanding of the need to preserve a unique school, which had half a century of experience in developing medium-range air defense systems for the air defense of the Ground Forces.

Despite the difficult conditions that made the development of the Buk-M3 air defense system the longest in the history of NIIP, in 2011 the work was completed with successful launches as part of state tests. Currently, the complex is being finalized according to a plan to eliminate comments received during the GSI process, and the State Armament Program provides for its serial launch. According to media reports, the Buk-M3 air defense system should begin to enter service with the troops from the end of 2015.

The main features of the complex in comparison with its predecessor: increased channeling, increased destruction range, significant increase in noise immunity, placement of missiles in transport and launch containers, increase in 1.5 times the ammunition capacity of missiles on self-propelled guns (now there are 6 of them). According to media reports, a new 9M317ME missile was developed at the Dolgoprudny Research and Production Enterprise, unified for the Buk-M3 land-based complex and the Shtil-1 ship-based air defense system with a vertical launch system. The missile in these complexes will be placed in transport and launch containers. In the ship version, the missile launch will be vertical, in the land version - inclined.

The Buk-M3 complex will hit air targets operating at speeds of up to 3 thousand meters per second and at altitudes of 0.015-35 km. In addition, the Buk-M3 anti-aircraft division will have 36 target channels. These data were cited by the head of the Air Defense Forces of the Ground Forces, Lieutenant General Alexander Leonov, in his interview with the Ekho Moskvy radio station in December 2013.

The new complex will have significantly increased firepower. NPP Start has created a new system for the complex - a self-propelled launcher with 12 missiles. There are no analogues among the Buk-M3 medium-range air defense systems abroad.

Based on materials:
“Tikhomirov constellation. 60 years of the Research Institute of Instrument Engineering named after
V.V.Tikhomirova . LLC Publishing Group "Bedretdinov and Co" , M., 2014
“Anti-aircraft missile systems of the SV air defense. Equipment and weapons" No. 5−6, 1999
.

Said Aminov