Изотопный состав газов гелий неонового лазера. Газовый гелий-неоновый лазер. Порядок выполнения лабораторной работы

РАБОТА 17. ИЗУЧЕНИЕ ХАРАКТЕРИСТИК ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

ЦЕЛЬ РАБОТЫ:

1. Ознакомиться с принципом действия и устройством гелий-неоново­го лазера.

2. Ознакомиться с интерференцией, дифракцией и поляризацией лазерного излучения.

3. Определить периоды двумерной структуры.

4. Определить угол расходимости лазерного луча.

КРАТКАЯ ТЕОРИЯ

Лазер принципиально новый источник света. От из­­­­­­лучения обыч­ных источников (лампы накаливания, лампы дневного света и т.д.) излучение лазера отличается тем, что оно близко к монохроматичес­кому, обладает исключительно высокой временной и пространственной когерентностью, очень малой расходимостью, а, следовательно, ис­ключительно высокой плотностью электромагнитной энергии. Кроме того луч лазера поляризован.

Принцип действия лазера основан на трех физическихявлениях: вынужденное излучение, инверсия населенности и положительная об­ратная связь.

Поведение атомов (молекул) подчиняется ­законам кван­­товой механики, согласно которым значения физических величин (например, энергии Е) могут принимать лишь определенные (дискретные) значе­ния. Для энергии эти значения принято графически изображать в ви­де так называемых уровней энергии (рис.1).

Самый нижний энергетический уровень называется основным, так как отвечает наиболееустойчивому состоянию частицы. Остальные уровни с более высокими значениями энергии называются возбужденными.

Процесс, сопровождающийся увеличением энергии атома, изображается как переход на более высокий энергетический уровень, про­цесс с уменьшением энергии - как переход на более низкий уровень.

Рассмотрим взаимодействие электромагнитного излучения (све­та) с атомами.

Первый вид взаимодействия: атом, находясь в основном состоянии, поглощает фотон, энергия которого достаточна для перехода в одно из возбужденных состояний (рис. 1а).

и второй : атом, находящийся в возбужденном состоянии,

спонтанно (самопроизвольно) переходит в более низкое энерге­тическое состояние: этот переход сопровождается излучением фотона (рис. 1в).

При спонтанных переходах различные атомы излучают неод­новременно и независимо, поэтому, фазы излучаемых фотонов не связаны между собой, направление излучения, его поляризация носят случайный характер, а частота излучения колеблется в некоторых пределах, определяемых шириной энергетических уровней Е 1 и Е 2 .

Спонтанное излучение ненаправленное, неполяризованное, немонохроматичное.

Существует, однако, третий вид взаимодействия , который называется вынужденным излучением. Если на атом, находящийся в возбужденном состоянии (рис.2), падает излучение с частотой ν соответствующей переходу атома в более низкое состояние (1), то атом переходит в него вынужденно под действием этого фотона, излучая при этом свой фотон, который называется вынужденным излучением.

Исключительно важно отметить характерное свойство вынужденного излучения: излученная волна (фотон) имеет точно то же направление и фазу, что и вынуждающая. Кроме этого эти две волны имеют одинаковые частоты и состояния поляризации.

При переходах 1→2 (рис. 1а) внешнее излучение поглощается, а при вынужденных переходах 2→1 (рис.2) наоборот, усиливается, т.к. к внешнему фотону добавляется фотон, испущенный атомом. Вероятности переходов 1→2 и 2→1одинаковы. Если большинство атомов находится в возбужденном состоянии, то тогда чаще будут происходить переходы 2→1. Другими словами, для усиления внешнего излучения необходимо, чтобы населенность уровня 2 была выше населенности уровня 1 или необходи­мо создать инверсию заселенности уровней.

При температуре Т число атомов N в состоянии с энергией Е определяется формулой Больцмана

N ~ exp(-E/kT)

где k – постоянная Больцмана.

Отсюда видно, что чем больше энергия состояния Е, тем меньше число N атомов находится в этом состоянии. Значит, в равновесном состоянии больше населены нижние уровни, и поглощение света преобладает над усилением.

Инверсия заселенности уровней отвечает неравновесному состоянию атомов среды.

Создать такое состояние можно искусственно, подводя
энергию к рабочему веществу, за счет которой атомы переводятся на верхний энергетический уровень. Такой процесс назы­вается накачкой. В разных типов лазеров накачка осуществля­ется по-разному: в твердотельных лазерах осуществляется за счет поглощения света от дополнительных ламп, в газовых - за счет передачи атомам газа энергии ускоренных элек­трическим полем электронов при их столкновениях.

Среда, в которой осуществлена инверсия заселенности, называется активной средой.


Слово "лазер" составлено из начальных букв английской фразы: "Light Amplification by Stimulated Emission of Radiation", что означает: "усиление света с помощью вынуж­денного излучениям". Лазеры также называют оптическими кван­товыми генераторами (ОКГ).

Газовые лазеры. Гелий-неоновый лазер.

Основным элементом гелий-неонового лазера непрерывного

действия является трубка 2 (рис.3), наполненная смесью гелия и неона с парциальными давлениями порядка 1 и 0,1 мм.рт.ст., соответственно. Концы трубки закрыты плоскопараллельными стеклянными пластинами 3, установленными под углом Брюстера к ее оси.

Накачка в газовом лазере осуществляется за счет энергии источника питания, поддерживающего тлеющий разряд между катодом 4 и анодом 5. Разряд в трубке возникает при 1,5-2,0 кВ. Разрядный ток трубки составляет десятки миллиам­пер.

Рабочими атомами гелий-неонового лазера являются атомы

неона, излучающие красные фотоны (λ =632,8 нм), На рис. 4 приведена упрощенная схема уровней атомов неона и гелия.

В чистом неоне заселение состояний 3S при накачке малоэффективно, поскольку этот уровень имеет малое время жизни, и атом неона спонтанно переходит в состояние 2Р.

Ситуация меняется, когда к неону добавляют гелий. Энер­гия уровня 2S гелия равна энергии уровня 3S неона. Уровень же энергии 2S гелия является долгоживущим и эффективно засе­ляется при накачке. При столкновениях возбужденных атомов гелия с атомами неона энергия передается атомам неона. В результате создается инверсная заселенность рабочего уровня 3S неона.



После этого в активной среде происходят многочисленные
акты спонтанных переходов 3S→2P, появляющиеся фотоны (λ =632,8 нм) приводят к вынужденным переходам. Те фотоны, которые движутся под некоторым углом к оси трубки, не участвуют в получении луча лазера. Формирование луча лазера идет только за счет фотонов, испускаемых вдоль оси трубки.

Усиление луча идет значи­тельно быстрее, если свет возвращать обратно в активную сре­ду, где он снова будет усиливаться за счет вынужденных пере­ходов. О такой ситуации говорят как об обратной связи. Для создания положительной обратной связи в лазерах используют оптический резонатор, который представляет собой два зеркала 1 (рис.3).

Нарастание интенсивности вынужденного излучения происхо­дит лавинообразно, и она становится существенно больше интен­сивности спонтанного излучения, которое в дальнейшем можно не учитывать.

Генерация луча лазера начинается в тот момент, когда увеличение энергии излучения за счет вынужденных переходов превосходит потери энергии за каждый проход резонатора. Для вывода луча из резонатора одно из зеркал 1 делается полупрозрачным. Поверхности обоих зеркал покрыты пленками, толщина которых подбирается таким образом, чтобы отражались волны нужной длины волны, а все другие гасились.

Прозрачность зеркал резонатора обычно меньше 1%.

Характеристики лазерного излучения.


Похожая информация.


Гелий-неоновый лазер - наряду с диодным или полупроводниковым - относится к числу наиболее часто используемых и самых приемлемых по цене лазеров для видимой области спектра. Мощность лазерных систем такого рода, предназначенных, в основном, для коммерческих целей, находится в диапазоне от 1 мВт до нескольких десятков мВт. Особенно популярны не столь мощные He-Ne-лазеры порядка 1 мВт, которые используют, главным образом, в качестве котировочных устройств, а также для решения иных задач в сфере измерительной техники. В инфракрасном и красном диапазонах гелий-неоновый лазер все чаще вытесняется диодным лазером. He-Ne-лазеры способны, наряду с красными линиями, излучать также оранжевые, желтые и зеленые, что достигается благодаря соответствующим селективным зеркалам.

Схема энергетических уровней

Важнейшие для функции He-Ne-лазеров энергетические уровни гелия и неона представлены на рис. 1. Лазерные переходы осуществляются в атоме неона, причем самые интенсивные линии получаются в результате переходов с длиной волн 633, 1153 и 3391 (см. таблицу 1).

Электронная конфигурация неона в основном состоянии выглядит так: 1s 2 2s 2 2p 6 причем первая оболочка (n = 1) и вторая оболочка (n = 2) заполнены соответственно двумя и восемью электронами. Более высокие состояния по рис. 1 возникают в результате того, что здесь имеется 1s 2 2s 2 2p 5 -оболочка, и светящийся (оптический) электрон возбуждается согласно схеме: 3s , 4s , 5s ,..., Зр , 4р ,... и т.д. Речь идет, следовательно, об одноэлектронном состоянии, осуществляющим связь с оболочкой. В схеме LS (Рассела - Саундерса) для энергетических уровней неона указано одно-электронное состояние (например, 5s ), а также результирующий полный орбитальный момент L (= S, Р, Д...). В обозначениях S, Р, D,... нижний индекс показывает полный орбитальный момент J, а верхний - мультиплетность 2S + 1, например, 5s 1 P 1 . Нередко используется чисто феноменологическое обозначение по Пашену (рис. 1). При этом счет подуровней возбужденных электронных состояний ведется от 2 до 5 (для s-состояний) и от 1 до 10 (для p-состояний).

Возбуждение

Активная среда гелий-неонового лазера представляет собой газовую смесь, к которой в электрическом разряде подается необходимая энергия. Верхние лазерные уровни (2s и 2р по Пашену) избирательно заселяются на основе столкновений с метастабильными атомами гелия (2 3 S 1 , 2 1 S 0). При этих столкновениях происходит не только обмен кинетической энергией, но и передача энергии возбужденных атомов гелия атомам неона. Этот процесс называют столкновением второго рода:

Не* + Ne -> Не + Ne* + ΔЕ, (1)

где звездочка (*) символизирует именно возбужденное состояние. Разность энергий составляет в случае возбуждения 2s-уровня: &DeltaE=0,05 эВ. При столкновении имеющаяся разность преобразуется в кинетическую энергию, которая затем распределяется в виде тепла. Для 3s-уровня имеют место идентичные отношения. Такая резонансная передача энергии от гелия к неону и есть основной процесс накачки при создании инверсии населенностей. При этом долгое время жизни метастабильного состояния Не благоприятно сказывается на селективности заселения верхнего лазерного уровня.

Возбуждение He-атомов происходит на основе соударения электронов - либо непосредственно, либо через дополнительные каскадные переходы из вышележащих уровней. Благодаря долгоживущим метастабильным состояниям плотность атомов гелия в этих состояниях весьма велика. Верхние лазерные уровни 2s и 3s могут - с учетом правил отбора для электрических доплеровских переходов - переходить только в нижележащие р-уровни. Для успешного генерирования лазерного излучения крайне важно, что время жизни s-состояний (верхний лазерный уровень) = примерно 100 нc, превышает время жизни р-состояний (нижний лазерный уровень) = 10 нc.

Длины волн

Далее мы более детально рассмотрим важнейшие лазерные переходы, используя рис. 1 и данные из таблицы 1. Самая известная линия в красной области спектра (0,63 мкм) возникает вследствие перехода 3s 2 → 2р 4 . Нижний уровень расщепляется в результате спонтанного излучения в течение 10 нс в 1s-уровень (рис. 1). Последний устойчив к расщеплению благодаря электрическому дипольному излучению, так что для него характерна долгая естественная жизнь. Поэтому атомы концентрируются в данном состоянии, которое оказывается высоконаселенным. В газовом разряде атомы в таком состоянии сталкиваются с электронами, и тогда вновь происходит возбуждение 2р- и 3s-уровней. При этом уменьшается инверсия населенностей, что ограничивает мощность лазера. Опустошение ls-состояния осуществляется в гелий-неоновых лазерах преимущественно из-за столкновений со стенкой газоразрядной трубки, в связи с чем при увеличении диаметра трубки отмечается снижение усиления и понижение кпд. Поэтому на практике диаметр ограничивается примерно 1 мм, что, в свою очередь, приводит к ограничению выходной мощности He-Ne-лазеров несколькими десятками мВт.

Участвующие в лазерном переходе электронные конфигурации 2s, 3s, 2р и Зр расщепляются в многочисленные подуровни. Это приводит, например, к дальнейшим переходам в видимой области спектра, как видно из таблицы 2. При всех видимых линиях He-Ne-лазера квантовая эффективность составляет порядка 10 %, что не так уж много. Схема уровней (рис. 1) показывает, что верхние лазерные уровни располагаются примерно на 20 эВ выше основного состояния. Энергия же красного лазерного излучения составляет всего 2 эВ.

Таблица 2. Длины волн λ, выходные мощности и ширина линий Δ ƒ He-Ne-лазера (обозначения переходов по Пашену)

Цвет λ
нм
Переход
(по Пашену)
Мощность
мВт
Δ ƒ
МГц
Усиление
%/м
Инфракрасный 3 391 3s 2 → 3p 4 > 10 280 10 000
Инфракрасный 1 523 2s 2 → 2p 1 1 625
Инфракрасный 1 153 2s 2 → 2p 4 1 825
Красный 640 3s 2 → 2p 2
Красный 635 3s 2 → 2p 3
Красный 633 3s 2 → 2p 4 > 10 1500 10
Красный 629 3s 2 → 2p 5
Оранжевый 612 3s 2 → 2p 6 1 1 550 1.7
Оранжевый 604 3s 2 → 2p 7
Желтый 594 3s 2 → 2p 8 1 1 600 0.5
Желтый 543 3s 2 → 2p 10 1 1 750 0.5

Излучение в инфракрасном диапазоне около 1,157 мкм возникает посредством переходов 2s → 2р. То же самое относится к несколько более слабой линии примерно 1,512 мкм. Обе эти инфракрасных линии находят применение в лазерах коммерческого назначения.

Характерной особенностью линии в ИК-диапазоне при 3,391 мкм является высокое усиление. В зоне слабых сигналов, то есть при однократном прохождении слабых световых сигналов, оно составляет порядка 20 дБ/м. Это соответствует коэффициенту 100 для лазера длиной в 1 метр. Верхний лазерный уровень такой же, как и при известном красном переходе (0,63 мкм). Высокое усиление, с одной стороны, вызвано крайне коротким временем жизни на нижнем 3p-уровне. С другой стороны, это объясняется относительно большой длиной волны и, соответственно, низкой частотой излучения. Обычно соотношение вынужденного и спонтанного излучений увеличивается для низких частот ƒ. Усиление слабых сигналов g, как правило, пропорционально g ~ƒ 2 .

Без селективных элементов излучение гелий-неонового лазера происходило бы на линии 3,39 мкм, а не в красной области при 0,63 мкм. Возбуждению инфракрасной линии препятствует либо селективное зеркало резонатора, либо поглощение в брюстеровских окнах газоразрядной трубки. Благодаря этому порог генерации лазера может повыситься до уровня, достаточного для излучения 3,39 мкм, так что здесь появляется только более слабая красная линия.

Конструктивное исполнение

Необходимые для возбуждения электроны образуются в газовом разряде (рис.2), который может использоваться с напряжением около 12 кВ при токах от 5 до 10 мА. Типичная длина разряда равна 10см или более, диаметр разрядных капилляров составляет порядка 1 мм и соответствует диаметру излученного лазерного пучка. При увеличении диаметра газоразрядной трубки коэффициент полезного действия понижается, так как для опустошения ls-уровня требуются столкновения со стенкой трубки. Для оптимальной выходной мощности используется полное давление (р) заполнения: р·D = 500 Па·мм, где D есть диаметр трубки. Соотношение в смеси He/Ne зависит от желаемой линии лазерного излучения. Для известной красной линии имеем Не: Ne = 5:l, а для инфракрасной линии около 1,15 мкм - He:Ne=10:l. Важным аспектом представляется также оптимизация плотности тока. Коэффициент полезного действия для линии 633 нм составляет около 0,1 %, поскольку процесс возбуждения в данном случае не слишком эффективен. Срок службы гелий-неонового лазера составляет порядка 20 000 рабочих часов.

Рис. 2. Конструктивное исполнение He-Ne-лазера для поляризованного излучения в мВт-диапазоне

Усиление при таких условиях находится на уровне g=0,1 м -1 , так что необходимо использовать зеркала с высокой отражательной способностью. Для выхода лазерного пучка только с одной стороны там устанавливают частично пропускающее (полупрозрачное) зеркало (например, с R = 98 %), а на другой стороне - зеркало с максимально высокой отражательной способностью (~ 100 %). Усиление для других видимых переходов значительно меньше (см. таблицу 2). Для коммерческих целей эти линии удалось получить только в последние годы с помощью зеркал, отличающихся чрезвычайно малыми потерями.

Ранее у гелий-неонового лазера выходные окна газоразрядной трубки фиксировались эпоксидной смолой, а зеркала монтировались снаружи. Это приводило к тому, что гелий диффундировал через клей, и в лазер попадал водяной пар. Сегодня эти окна крепятся методом прямого спая металла со стеклом, что дает снижение утечки гелия примерно до 1 Па в год. В случае небольших лазеров массового производства зеркальное покрытие наносится непосредственно на выходные окна, что значительно упрощает всю конструкцию.

Свойства пучка

Для выбора направления поляризации газоразрядная лампа снабжается двумя наклонно расположенными окнами или, как показано на рис. 2, в резонатор вставляется брюстеровская пластина. Отражательная способность на оптической поверхности обращается в нуль, если свет падает под так называемым углом Брюстера и поляризован параллельно плоскости падения. Таким образом, излучение с таким направлением поляризации без потерь проходит через брюстеровское окно. В то же время отражательная способность компоненты, поляризованной перпендикулярно плоскости падения, достаточно высока и подавляется в лазере.

Коэффициент (степень) поляризации (отношение мощности в направлении поляризации к мощности перпендикулярно этому направлению) составляет у обычных коммерческих систем 1000:1. При работе лазера без брюстеровских пластин с внутренними зеркалами генерируется неполяризованное излучение.

Лазер генерирует обычно на поперечной ТЕМ 00 -моде (моде низшего порядка), причем образуется сразу несколько продольных (аксиальных) мод. При расстоянии между зеркалами (длине резонатора лазера) L = 30 см межмодовый частотный интервал составляет Δ ƒ` = c/2L = 500 МГц. Центральная частота находится на уровне 4,7·10 14 Гц. Поскольку усиление света может произойти в пределах диапазона Δ ƒ = 1500 МГц (доплеровская ширина), при L = 30CM излучается три разных частоты: Δ ƒ/Δ ƒ`= 3. При использовании меньшего расстояния между зеркалами (<= 10см) может быть получена одночастотная генерация. При короткой длине мощность будет весьма незначительной. Если требуется одночастотная генерация и более высокая мощность, можно использовать лазер большей длины и с оснащением частотно-селективными элементами.

Гелий-неоновые лазеры около 10 мВт часто находят применение в интерферометрии или голографии. Длина когерентности подобных лазеров серийного производства составляет от 20 до 30см, что вполне достаточно для голографии небольших объектов. Более значительные длины когерентности получаются при использовании серийных частотно-селективных элементов.

При изменении оптического расстояния между зеркалами в результате теплового или иного воздействия происходит сдвиг аксиальных собственных частот резонатора лазера. При одночастотной генерации здесь не получается стабильной частоты излучения - она бесконтрольно перемещается в диапазоне ширины линии 1500 МГц. Путем дополнительного электронного регулирования может быть достигнута стабилизация частоты как раз по центру линии (у коммерческих систем возможна стабильность частоты в несколько МГц). В исследовательских лабораториях удается иногда стабилизировать гелий-неоновый лазер на диапазон менее 1 Гц.

Путем использования подходящих зеркал разные линии из таблицы 4.2 могут возбуждаться для генерации лазерного излучения. Чаще всего находит применение видимая линия около 633 нм с типовыми мощностями в несколько милливатт. После подавления интенсивной лазерной линии порядка 633 нм благодаря использованию селективных зеркал или призм в резонаторе могут появиться другие линии в видимом диапазоне (см. таблицу 2). Однако выходные мощности этих линий составляют всего 10 % от выходной мощности интенсивной линии или даже меньше.

Гелий-неоновые лазеры коммерческого назначения предлагаются с разными длинами волн. Помимо них имеются еще лазеры, генерирующие на многих линиях и способные излучать волны множества длин в самых разных комбинациях. В случае перестраиваемых He-Ne-лазеров предлагается, поворачивая призму, выбрать требуемую длину волны.

Газовые гелий-неоновые лазеры (He-Ne лазеры) производства немецкой компании LSS имеют надежную конструкцию, хорошее качество луча и долгий срок службы - до 20 000 часов. Серия гелий-неоновых лазеров представлена большим разнообразием моделей лазеров, одномодовых и мультимодовых, с выходной мощностью от 0,5 до 35 мВт, излучающих в спектральном диапазоне красного, зеленого и желтого. Есть также лазерные трубки с окном Брюстера для образовательных и научных целей.

Все модели комплектуются блоком питания. Газовые ионные аргоновые лазеры серии LGK удовлетворяют внушительному перечню мировых стандартов и имеют сертификаты CDRH, IEC, CSA, CE, TUV, UL. Компания LSS осуществляет эффективную поддержку для работающих по всему миру лазеров собственного производства, предоставляя своим клиентам удобный и быстрый сервис по замене лазерных трубок. Помимо серийных моделей, компания выпускает лазерные системы под индивидуальный заказ.

Гелий-неоновый лазер предназначен для широкого круга приложений таких областей, как сканирующая микроскопия, спектроскопия, метрология, промышленные измерения, позиционирование, выравнивание, направленных, тестирования, проверки кода, научные, фундаментальные и медицинские исследования, а также для образовательных целей.


Технические характеристики лазерных модулей

В таблицах ниже приведены ключевые характеристики лазеров. Для всех пунктов ниже перечисленные характеристики представляют собой общую производительность стандартных моделей. Индивидуальные характеристики могут быть оптимизированы для конкретных приложений. Пожалуйста, свяжитесь с консультантом нашей компании, если у Вас есть особые пожелания.

Технические характеристики лазерных трубок

Технические характеристики блока питания

Все модели газовых ионных аргоновых лазеров серии LGK комплектуются блоком питания производства LSS.

Ознакомление с принципом работы гелий-неонового лазера и изучение характеристик лазерного излучения.

Основы физики работы лазера

Слово «Лазер» составлено из первых букв английского словосочетания «Light Amplification by Stimulated Emission of Radiation» - усиление света с помощью индуцированного излучения.

Гелий-неоновый лазер (конструкция и принцип работы)

В Не-Ne лазере используются принцип резонансной передачи энергии возбуждения от примесного газа (Не) основному (Ne). Диаграмма энергетических уровней гелия и неона приведена на рис. 7.5.

Для данной смеси газов условия резонансной передачи энергии выполняются для уровней

2 1 s (He) → 3s (Ne) , 2 3 s (He) → 2s (Ne)

В результате газового разряда уровни 2 1 s и 2 3 s заселяются за счет электронных ударов. При неупругих столкновениях возбужденных атомов гелия с атомами неона происходит возбуждение последних и заселение метастабильных уровней 2s и 3s:

He * + Ne → He + Ne * (2s) + Ne * (3s)

Хотя уровни 2р и 3р неона также заселяются за счет электронных ударов, что уменьшает разность населенности уровней 2s, 3s и 2р, 3р, но эффективность этого процесса мала по сравнению с процессом (7.11). Это достигается тем, что парциальное давление неона (~10 Па) много меньше парциального давления гелия (~100 Па), в связи с чем концентрация гелия значительно превышает концентрацию неона.

За счет дефекта энергий уровней (2 1 s → 2s), значительно превышающего величину kT, результат процесса (7.11) далек от желаемого. Однако это компенсируется большим временем жизни возбужденных атомов Ne на уровнях 2s и 3s, состоящих из четырех подуровней, по сравнению с уровнями 2р и 3р. Например, время жизни неона на уровне 2s 2 составляет 9,6*10 -8 с, а время жизни на уровне 2р 4 - 1,2-10 -8 с.

При осуществлении инверсной заселенности уровней 2s и 3s происходят излучательные переходы на уровни 2р и 3р со следующими длинами волн:

2s 2 → 3p 4 λ 2 = 3,39 мкм
3s 2 →2p 4 λ 3 = 0,6328 мкм

«Отработанные» атомы переходят за счет спонтанного излучения с уровней 3р и 2р на метастабильный уровень 1s. Сток частиц с уровня 1s обеспечивается, в основном, за счет диффузии к стенкам.
Схема конструкции газового лазера приведена на рис. 7.6.


В газоразрядной трубке, заполненной смесью неона и гелия в пропорции 1:10, зажигается газовой разряд, с помощью которого происходит инверсия населенности уровней.

Поскольку в процессе разряда появляются фотоны с произвольными частотами, существуют и фотоны с длинами волн λ 1 , λ 2 и λ 3 , совпадающими с длинами волн соответствующих переходов. Они вызывают индуцированный переход с образованием фотонов с этими же частотами, фазами и направлениями волновых векторов k" . В случае, если появляется волна частотой, например, ω 3 =с/λ 3 , она распространяется вдоль трубки и отражается от зеркала. Расстояние между зеркалами выбирается кратным половине длины волны, что обеспечивает возбуждение резонатора (колебательного контура в оптическом диапазона) именно на этой длине волны.

Отраженная от зеркал волна приходит в данную точку в той же фазе, что и первичная, обеспечивая положительную связь. Происходит накопление фотонов, то есть энергии монохроматической волны. Ввиду высокой добротности контура, достигающей десятков тысяч единиц, амплитуда колебаний становится достаточно большой. Наличие выходных окон газоразрядной трубки, расположенных под углом Брюстера, выделяет линейную поляризацию волн в определенной плоскости, в связи с чем волны с иной поляризацией не проходят через полупрозрачное зеркало 2, которое пропускает всего 4-5% интенсивности излучения, а остальные 96% идут на поддержание процесса генерации.

Увеличение потерь излучения на волне λ 2 (усиление на переходе 2s 2 → 3p 1 велико по сравнению с усилением на переходе 3s 2 → 2p 4) достигается как использованием окон, расположенных под углом Брюстера, так и соответствующей расстройкой резонатора. Однако наличие этого излучения снижает эффективность работы лазера в видимом оптическом диапазоне.

Описание лабораторной установки

Лабораторная установка (рис. 7.7) представляет собой газовый Не-Ne лазер 1, который установлен на оптической скамье 2. Блок питания 3 лазера расположен отдельно. На держателе 4 расположен горизонтальный столик 5, на который в ходе выполнения работы устанавливаются следующие детали: дифракционная решетка 6; экран 7; поляроид 8; вращение которого осуществляется рычагом 9; фотодиод 10. Микроамперметром 11 измеряется ток в цепи фотодиода. Стационарный экран 12 должен быть расположен на расстоянии не менее 1,5 м от лазера.

Методика проведения эксперимента

После прохождения через дифракционную решетку лазерного луча на экране возникает дифракционная картина пятен, соответствующих главным дифракционным максимумам нулевого, первого, второго и т.д. порядков (рис. 7.8).

Длина волны излучения определяется из условия главных дифракционных максимумов

  • d - постоянная дифракционной решетки,
  • φ - угол дифракции,
  • k - порядок дифракционного спектра,
  • λ - длина волны.

Угол дифракции вычисляется по формуле

φ = arctg h i / l

Здесь l - расстояние между экраном и дифракционной решеткой,
h i - расстояние между нулевым и i-ым максимумами (i = 1, 2,...).

По формуле (7.12) вычисляется длина волны излучения.

Малое угловое расхождение лазерного луча можно оценить, помещая экраны на разных расстояниях от лазера (рис. 7.9) и измеряя радиус пятна излучения.

Зная расстояние l между экранами и диаметры d световых пятен на экранах, можно определить угловое расхождение светового пучка по формуле


Исследование поляризации излучения лазера
Помещая в пучке излучения лазера поляроид и вращая его вокруг оси пучка, можно полностью погасить или полностью пропустить свет. Это говорит о том, что излучение лазера линейно поляризовано. Поместив за поляроидом фотоэлемент, можно измерить силу фототока i для каждой ориентации поляроида и построить график i = ƒ (φ)). Этот график дает зависимость интенсивности света I, прошедшего через поляроид, от угла поворота поляроида, т.к. I ~ i. Доказательством линейной поляризации излучения лазера служит соответствие полученного графика закону Малюса

I = I o * cos 2 α

Порядок выполнения лабораторной работы

Внимание! При работе с лазером помните, что попадание в глаза прямого лазерного излучения опасно для зрения.

Ознакомьтесь с информацией на лабораторном столе (п.1). Включение лазера производите в присутствии преподавателя или лаборанта.

Включите в сеть блок питания 3 (см. рис. 7.7). Тумблер «сеть» на блоке питания поставьте в положение «вкл». На экране 12 должно появиться яркое пятно. Через 7-10 минут лазер готов к работе.

Определение длины волны излучения лазера
  1. Установите столик 5 на расстояние (0,8-1,2) м от экрана 12 (см. рис. 7.4). Для этого отпустите зажимной винт стойки, плавно переместив столик вдоль скамьи, установите по указателю нужное положение и закрепите винтом.
  2. На столике 5 установите дифракционную решетку 6. Выведите световое пятно в центр дифракционной решетки (см. указание на лабораторном столе). На экране 12 возникает дифракционная картина с ярким нулевым максимумом.
  3. Измерьте расстояние между дифракционными максимумами первого h i и второго h 2 порядков (см. рис. 7.8).
  4. Переместите столик 5 на (0,2-0,3) м ближе к экрану 12.
  5. Измерьте h i и h 2 при новом положении дифракционной решетки.
  6. Запишите результаты измерений и постоянную решетку d = 0,01 мм в табл. 7.1.
  7. Снимите со столика дифракционную решетку.
Оценка направленности излучения лазера
  1. Установите столик на расстоянии l = (0,8-0,9) м от экрана 12 (см. рис. 7.7).
  2. На столике 5 установите поляроид 8, который в данном упражнении используется в качестве ослабителя яркости светового луча. Выведите световое пятно в центр поляроида. Вращая поляроид рычагом 9, получите оптимальную для Ваших глаз яркость пятна на экране.
  3. Приложите к экрану листок бумаги и зарисуйте сечение пятна.
  4. Установите на столик 5 экран 7 (между поляроидом и экраном 12).
  5. Зарисуйте сечение пятна на экране 7.
  6. Измерьте диаметры пятен по своим рисункам не менее трех раз по разным направлениям.
  7. Запишите результаты измерений диаметров пятен (d") и расстояние l в табл. 7.2.
  8. Снимите со столика экран 7.
Исследование поляризации изучения лазера
  1. Вращая поляроид рычагом 9, убедитесь, что яркость пятна на экране 12 зависит от угла поворота поляроида вокруг оси светового пучка. Получите максимальную яркость пятна. Это положение поляроида будет началом отсчета угла поворота (φ = 0).
  2. Установите на столик фотодиод 10 и подключите к нему микроамперметр 11.
  3. Поставьте тумблер микрометра в положение «вкл».
  4. Выведите световой пучок на фоточувствительный слой фотодиода (см. указание на лабораторном столе). В этом случае микроамперметр будет показывать максимальный ток в цепи фотодиода.
  5. Измеряйте ток через каждые 5 o поворота поляроида. Отсчет φ производите по шкале на диске крепления поляроида. Измерения запишите в табл. 7.3.
  6. Поставьте тумблер микроамперметра и тумблер «сеть» блока питания в положение «вкл». Выключите блок питания из сети.
  7. Снимите со столика поляроид и фотодиод.
Обработка результатов измерений

Перечень контрольных вопросов

  1. Что такое спонтанное и индуцированное (вынужденное) излучение?
  2. Что такое инверсная заселенность энергетических уровней и как она достигается?
  3. Почему для усиления происходящего через среду светового потока необходима инверсная заселенность энергетических уровней?
  4. Каков принцип работы трех - и четырехуровневого лазера?
  5. Объясните принцип получения инверсной населенности в смеси газов.
  6. Нарисуйте принципиальную схему лазера и расскажите принцип его работы.
  7. Нарисуйте схему энергетических уровней лазера на смеси Не-Ne, расскажите о возможных переходах между уровнями.
  8. Зачем в газоразрядной трубке выходные окна ставятся под углом Брюстера?
  9. Чем объясняется высокая направленность излучения лазера?
  10. В чем заключается особенности индуцированного излучения?

1) активного вещества; 2) источника накачки, приводящего активное вещество в возбужденное состояние; 3) оптического резонатора, состоящего из двух параллельных друг другу зеркал (рис. 20)

Рис. 20.

Гелий-неоновый лазер -- лазер, активной средой которого является смесь гелия и неона. Гелий-неоновые лазеры часто используются в лабораторных опытах и оптике. Имеет рабочую длину волны 632,8 нм, расположенную в красной части видимого спектра.


Устройство гелий-неонового лазера

Рабочим телом гелий-неонового лазера служит смесь гелия и неона в пропорции 5:1, находящаяся в стеклянной колбе под низким давлением (обычно около 300 Па). Энергия накачки подаётся от двух электрических разрядников с напряжением около 1000ч5000 вольт (в зависимости от длины трубки), расположенных в торцах колбы. Резонатор такого лазера обычно состоит из двух зеркал-- полностью непрозрачного с одной стороны колбы и второго, пропускающего через себя около 1% падающего излучения на выходной стороне устройства.

Гелий-неоновые лазеры компактны, типичный размер резонатора-- от 15см до 2 м, их выходная мощность варьируется от 1 до 100 мВт.

Принцип действия

Гелий-неоновый лазер. Светящийся луч в центре-- электрический разряд.

В газовом разряде в смеси гелия и неона образуются возбуждённые атомы обоих элементов. При этом оказывается, что энергии метастабильного уровня гелия 1 S 0 и излучательного уровня неона 2p 5 5s І оказываются примерно равными-- 20.616 и 20.661 эВ соответственно. Передача возбуждения между двумя этими состояниями происходит в следующем процессе:

He* + Ne + ДE He + Ne*

и её эффективность оказывается очень большой (где (*) показывает возбуждённое состояние, а ДE-- различие энергетических уровней двух атомов.) Недостающие 0.05 эВ берутся из кинетической энергии движения атомов. Заселённость уровня неона 2p 5 5s І возрастает и в определённый момент становится больше чем у нижележащего уровня 2p 5 3p І. Наступает инверсия заселённости уровней-- среда становится способной к лазерной генерации.

При переходе атома неона из состояния 2p 5 5s І в состояние 2p 5 3p І испускается излучение с длиной волны 632.816 нм. Состояние 2p 5 3p І атома неона также является излучательным с малым временем жизни и поэтому это состояние быстро девозбуждается в систему уровней 2p 5 3s а затем и в основное состояние 2p 6 -- либо за счёт испускания резонансного излучения (излучающие уровни системы 2p 5 3s), либо за счёт соударения со стенками (метастабильные уровни системы 2p 5 3s).

Кроме того, при правильном выборе зеркал резонатора можно получить лазерную генерацию и на других длинах волн: тот же уровень 2p 5 5s І может перейти на 2p 5 4p І с излучением фотона с длиной волны 3.39 мкм, а уровень 2p 5 4s І, возникающий при столкновении с другим метастабильным уровнем гелия, может перейти на 2p 5 3p І, испустя при этом фотон с длиной волны 1.15 мкм. Также возможно получить лазерное излучение на длинах волн 543,5 нм (зелёный), 594 нм (жёлтый) или 612 нм (оранжевый).

Полоса пропускания, в которой сохраняется эффект усиления излучения рабочим телом лазера, довольно узка, и составляет около 1,5 ГГц, что объясняется наличием доплеровского смещения. Это свойство делает гелий-неоновые лазеры хорошими источниками излучения для использования в голографии, спектроскопии, а также в устройствах считывания штрих-кодов.

Рубиновый лазер

Лазер состоит из трех основных частей: активного (рабочего) вещества, резонансной системы, представляющей две параллельные пластины с нанесенными на них отражающими покрытиями, и системы возбуждения (накачки), в качестве которой обычно используется ксеноновая лампа-вспышка с источником питания.

Рубин представляет собой окись алюминия, в которой часть атомов алюминия замещена атомами хрома (Al2O3*Cr2O3) Активным веществом служат ионы хрома Cr 3+ . От содержания хрома в кристалле зависит его окраска. Обычно используется бледно-розовый рубин, содержащий около 0,05% хрома. Рубиновый кристалл выращивают в специальных печах, затем полученную заготовку отжигают и обрабатывают, придавая ей форму стержня. Длина стержня колеблется от 2 до 30 см, диаметр от 0,5 до 2 см. Плоские торцовые концы делают строго параллельными, шлифуют и полируют с высокой точностью. Иногда отражающие поверхности наносят не на отдельные отражающие пластины, а непосредственно на торцы рубинового стержня. Поверхности торцов серебрят, причем поверхность одного торца делают полностью отражающей, другого -- отражающей частично. Обычно коэффициент пропускания света второго торца составляет около 10--25%, но может быть и другим.

Рубиновый стержень помещают в спиральную импульсную ксеноновую лампу, витки которой охватывают его со всех сторон. Вспышка лампы длится миллисекунды. За это время лампа потребляет энергию в несколько тысяч джоулей, большая часть которой уходит на нагревание прибора. Другая, меньшая часть, в виде голубого и зеленого излучения поглощается рубином. Эта энергия и обеспечивает возбуждение ионов хрома.

В нормальном, невозбужденном состоянии ионы хрома находятся на нижнем уровне 1. При облучении рубина светом ксеноновой лампы, содержащим зеленую часть спектра, атомы хрома возбуждаются и переходят на верхний уровень 3, соответствующий поглощению света длиной волны 5600 А. Ширина полосы поглощения этого уровня составляет около 800 А.

С уровня 3 часть возбужденных атомов хрома снова возвращается на основной уровень 1, а часть переходит на уровень 2. Это так называемый безызлучательный переход, при котором ионы хрома отдают часть своей энергии кристаллической решетке в виде тепла. Вероятность перехода с уровня 3 на уровень 2 в 200 раз больше, а с уровня 2 на уровень 1 в 300 раз меньше, чем с уровня 3 на уровень 1. Это приводит к тому, что уровень 2 оказывается более заселенным, чем уровень 1. Иными словами, заселенность получается инверсной и создаются необходимые условия для интенсивных индуцированных переходов.

Такая система крайне неустойчива. Вероятность спонтанных переходов в любой момент времени очень велика. Первый же фотон, появившийся при спонтанном переходе, по закону индуцированного излучения выбьет из соседнего атома второй фотон, переведя излучивший атом в основное состояние. Далее эти два фотона выбьют еще два, после чего их будет четыре, и т. д. Процесс нарастает практически мгновенно. Первая волна излучения, дойдя до отражающей поверхности, повернет обратно и вызовет дальнейшее увеличение числа индуцированных переходов и интенсивности излучения. Отражение от отражающих поверхностей резонатора повторится многократно, и если потери мощности при отражении, вызываемые несовершенством отражающих покрытий, а также полупрозрачностью одного из торцов стержня, через который уже в начале генерации будет вырываться поток излучения, не будут превосходить той мощности, которую приобретает в результате начавшейся генерации формирующийся в стержне лазера луч, то генерация будет нарастать, а мощность увеличиваться до тех пор, пока большинство возбужденных частиц активного вещества (ионов хрома) не отдадут свою энергию, приобретенную в момент возбуждения. Через частично посеребренный торец стержня вырвется луч очень высокой интенсивности. Направление луча будет строго параллельно оси рубина.

Те фотоны, направление распространения которых в начале их возникновения не совпало с осью стержня, уйдут через боковые стенки стержня, не вызвав сколько-нибудь заметной генерации.

Именно многократное прохождение образованной световой волны между торцовыми стенками резонатора без какого-либо существенного отклонения от оси стержня обеспечивает лучу строгую направленность и огромную выходную мощность.