Схемы простых генераторов низкой частоты. Простейший генератор звуковой частоты Описание принципиальной схемы генератора звука

Что такое генератор звука и с чем его едят? Итак, давайте первым делом определимся со значением слова “генератор”. Генератор от лат. generator – производитель. То есть объясняя домашним языком, генератор – это устройство, которое производит что-либо. Ну а что такое звук? Звук – это колебания, которые может различить наше ухо. Кто-то пёрнул, кто-то икнул, кто-то кого то послал – все это звуковые волны, которые слышит наше ухо. Нормальный человек может слышать колебания в диапазоне частот от 16 Гц и до 20 Килогерц. Звук до 16 Герц называют инфразвуком , а звук более 20 000 Герц – ультразвуком .

Из всего вышесказанного можно сделать вывод, что генератор звука – это устройство, которое излучает какой-либо звук. Все элементарно и просто;-) А почему бы его нам не собрать? Схему в студию!

Как мы видим, моя схема состоит из:

– конденсатора емкостью 47 наноФарад

– резистора 20 Килоом

– транзисторов КТ315Г и КТ361Г, можно с другими буквами или вообще какие-нибудь другие маломощные

– маленькая динамическая головка

– кнопочка, но можно сделать и без нее.

На макетной пл ате все это выглядит примерно вот так:


А вот и транзисторы:


Слева – КТ361Г, справа – КТ315Г. У КТ361 буква находится посередине на корпусе, а у 315 – слева.

Эти транзисторы являются комплиментарными парами друг другу.

А вот и видео:

Частоту звука можно менять, меняя значение резистора или конденсатора. Также частота увеличивается, если повышать напряжение питания. При 1,5 Вольт частота будет ниже, чем при 5 Вольтах. У меня на видео напряжение выставлено 5 Вольт.

Знаете в чем еще прикол? У девчат диапазон восприятия звуковых волн намного больше, чем у парней. Например, парни могут слышать до 20 Килогерц, а девчата уже даже до 22 Килогерц. Этот звук настолько писклявый, что он очень сильно действует на нервы. Что я хочу этим сказать?)) Да да, почему бы нам не подобрать такие номиналы резистора или конденсатора, чтобы девчата слышали этот звук, а парни нет? Прикиньте, сидите вы на парах, врубаете свою шарманку и смотрите на недовольные рожи одногруппниц (классниц). Для того, чтобы настроить прибор, нам конечно понадобится девочка, которая помогла бы услышать этот звук. Не все девчата также воспринимают этот высокочастотный звук. Но самый-самый прикол в том, что невозможно узнать, откуда идет звучание))). Только если что, я вам это не говорил).

Звуковой генератор типа "ЗГ-10"

Назначение и область применения

Звуковой генератор типа "ЗГ-10" представляет собой переносный лабораторный прибор, предназначенный для получения синусоидальных напряжений переменного тока низкой частоты.

Он изготавливался по техническим условиям ТУ No 0.506.020-54 и рассчитан для эксплуатации при температуре окружающего воздуха от +10 до +30 град. С и относительной влажности до 80%.

Прибор типа "ЗГ-10" применяется для регулировки и испытания низкочастотных ступеней радиоаппаратуры в лабораторной и цеховой практике.

Основные технические характеристики

  1. Диапазон генерируемых частот от 20 до 20000 Гц разбит на три поддиапазона:
    а) 20 - 200 Гц с множителем х1;
    б) 200 - 2000 Гц с множителем х10;
    в) 2000 - 20000 Гц с множителем х100.
  2. Погрешность градуировки по частоте не превышает +-2% +- 1 Гц.
  3. Нестабильность частоты при изменении напряжения питания на +-10% от номинала не превышает +-0,2%.
  4. Изменение частоты после 30 минут предварительного прогрева не превышает 3 Гц на частоте 1000 Гц за первый час работы и 4 Гц в течение последующих семи часов работы.
  5. Максимальное выходное напряжение 150 В при максимальной мощности в 5 Вт.
  6. Выход прибора рассчитан на симметричную и несимметричную нагрузку с сопротивлением в 50, 200, 600 или 5000 Ом.
  7. Неравномерность частотной характеристики относительно нормального уровня на частоте 400 Гц не превышает +-1,5 дБ.
  8. При изменении напряжения питания на +10% выходная мощность изменяется не более чем на +5%.
  9. Коэффициент нелинейных искажений не превышает 0,7%.
  10. Индикатор выходного напряжения с пределом измерения в 60 В. Погрешность градуировки шкалы индикатора на частоте 1000 Гц и при нагрузке в 600 Ом не превышает +-5%.
  11. Выходное напряжение регулируется:

  12. а) плавно - в пределах от нуля до максимального значения;
    б) ступенями - через 1 дБ до 110 дБ при помощи двух делителей - первого, ступенями через 10 до 100 дБ и второго, через 1 дБ до 10 дБ.
  13. В приборе применяются следующие лампы: 6Ж8 - 1 шт.; 6П9 - 1 шт.; 6Н8С - 1 шт.; 6С4С - 2 шт.; 5Ц3С - 1 шт.; 6Х6С - 1 шт. и ТП-6/2 1 шт.
  14. Питание прибора осуществляется от сети переменного тока частотой 50 Гц и напряжением в 110, 127 или 220 В +-10%.
  15. Потребляемая мощность 150 Вт.
  16. Габаритные размеры прибора 598 х 357 х 293 мм.
  17. Вес прибора около 35 кг.
Схема прибора

Схема звукового генератора типа "ЗГ-10" состоит из следующих основных элементов: генератора, усилителя, индикатора выходного напряжения, выходного устройства и выпрямителя.

Генератор представляет собой двухступенчатый усилитель, собранный на лампах 6Ж8 и 6П9 и возбуждающийся при помощи положительной обратной связи, которая осуществляется фазирующей цепочкой, состоящей из сопротивлений и емкостей и обеспечивающей возбуждение генератора на заданной параметрами этой цепочки частоте. Изменение частоты генератора осуществляется при помощи изменения параметров фазирующей цепочки.

Схема генератора охвачена отрицательной обратной связью, обеспечивающей устойчивость частоты и минимальный коэффициент нелинейных искажений.

В цепи отрицательной обратной связи применяется термистор, который в качестве нелинейного сопротивления обеспечивает сохранение постоянства амплитуды генерируемого сигнала.

Усилитель собран по двухступенчатой схеме на лампах 6Н8С, 6С4С и 6С4С. Первая ступень, собранная на лампе 6Н8С, представляет собой фазоинвертор. Вторая ступень, собранная на двух лампах 6С4С, представляет собой двухтактный усилитель мощности.

Индикатор выходного напряжения представляет собой ламповый вольтметр, устроенный по схеме двухполупериодного выпрямителя, собранного на лампе типа 6Х6С. В качестве индикатора используется магнитоэлектрический прибор типа М5 класса 2,5.

Выходное устройство представляет собой два делителя, собранных по схеме моста и согласующего трансформатора. Первый делитель дает ослабление до 100 дБ ступенями через 10 дБ и второй до 10 дБ ступенями через 1 дБ.

Согласующий трансформатор служит для согласования выхода генератора с нагрузкой как симметричной, так и несимметричной сопротивлением в 50, 200, 600 или 5000 Ом.

Выпрямитель собран по двухполупериодной схеме на лампе типа 5Ц3С с двухзвенным Г-образным фильтром. Питание выпрямителя осуществляется от сети переменного тока частотой 50 Гц и напряжением в 110, 127 или 220 В.

Конструкция

Прибор собран и смонтирован на металлической вертикальной панели и горизонтальном шасси, помещенном в металлический кожух, снабженный ручками для переноски. На передней панели прибора расположены:

  1. ручка установки частоты с лимбом;
  2. индикатор выходного напряжения;
  3. индикаторная лампочка;
  4. выключатель питания;
  5. переключатель "множителя";
  6. ручка установки выходного напряжения;
  7. переключатель нагрузки;
  8. выходные клеммы;
  9. переключатель на "высокоомную нагрузку";
  10. два переключателя ослабителей выходного устройства.
Принципиальная схема звукового генератора типа "ЗГ-10"

Такое устройство будет очень полезно при испытаниях звуковых цепей усилителей ресиверов, телевизоров и другой промышленной и самодельной аппаратуры. Схема генератора приводится по книге В. Г. Борисова «Юный радиолюбитель» (с 145-146 в 8-м издании), с незначительными изменениями.

Схема генератора ЗЧ

Генератор собран на микросхеме К155ЛА3 (можно использовать К555ЛА3), которая представляет собой 4 элемента 2И-НЕ. Непосредственно генератор образуют последовательно соединенные логические элементы DD1.1, DD1.2, DD1.3, включенные инверторами. Конденсатор C1, емкостью 0,47 мкФ, создает положительную обратную связь между выходом DD1.2 и входом DD1.1. В принципе, сигнал можно снимать с выхода DD1.3, элемент DD1.4 просто их инвертирует. Частоту импульсов можно менять резистором переменным R1. Резистор R2 служит регулятором уровня выходного сигнала. Сопротивление резистора R1 680 Ом, R2 10 кОм, переменные резисторы могут быть любого типа. При указанных в схеме параметрах радиодеталей, частоту импульсов можно менять в пределах 500 - 5000 Гц . Диод VD1 служит для защиты от подачи питания неправильной полярности, в качестве него подойдет любой маломощный диод, например Д220. Схема смонтирована на небольшой макетной плате. Но благодаря малому количеству деталей можно выполнить схему навесным монтажом.

Генератор в сборе

Штатное напряжение питания микросхем К155 и К555 составляет 5 В, но генератор работоспособен при питании схемы от «квадратной» батареи напряжением 4,5 В (батарея типа 3336 по старой номенклатуре), падение напряжения на диоде VD1 не влияет на работоспособность устройства. Устройство можно использовать для звуковой частоты.

Бытовая техника

Схема звукового генератора на транзисторах

Генератор звуковых волн – это устройство или узел электрической цепи, отвечающий за создание и воспроизведение звуковых колебаний.

Где может пригодиться такое устройство:

1.Простой электрический дверной звонок (при замыкании контактов вынесенной удаленно кнопки происходит оповещение звуком о посетителях);

2.Сигнализации (при срабатывании системы безопасности включается блок звукового оповещения);

3.Формирование определенного тембра звука в звуковой аппаратуре;

4.Отпугивание насекомых/птиц (при излучении звуковых колебаний в определенных частотах);

5.В другой профессиональной технике (проверка низкочастотных цепей, тестирование деталей на дефекты и другие цели, основывающиеся на свойствах звуковых волн).

Простейший генератор звука на транзисторах

Ниже предложена схема с минимальным количеством радиодеталей. Она может пригодиться начинающим радиолюбителям, в радиокружках, в тестовых стендах, для дверного звонка и т.п.

В обиходе ее еще называют "пищалкой".

VT1 – биполярный транзистор n-p-n типа, например, КТ315. Подойдет любой, даже маломощный.

VT2 – биполярный, но p-n-p n типа, например, КТ361. Тоже подойдет любой.

Колебания задаются конденсатором, его емкость должна быть в диапазоне 10-100 нФ.
Резистор – подстроечный, подойдет с номиналом в диапазоне 100-200 кОм.

Динамик BA1 должен быть маломощным, его параметры должны быть сопоставимы с параметрами питающего элемента. В данной схеме может использоваться любой подручный – из игрушек или наушников.

При правильном расположении элементов печатная плата не понадобится.

Доработка до "игровой панели"

По указанной схеме можно собрать целую панель, способную генерировать звуковые колебания различных частот:

1.Так как за генерацию частоты отвечает емкость конденсатора, то количество выводов можно сделать по количеству имеющихся в наличии разных емкостей (желательно с большим шагом, чтобы изменение частоты было сразу заметно уху.

2.Один вывод конденсаторов будет общим у всех, и соединен, например, с базой VT1 или контактом динамика.

3.Вторые выводы соединяются с выводами одиночных гальванических контактов на панели.

4.Теперь для получения звука достаточно включить в цепь новый конденсатор лишь соединив любой из выведенных контактов со второй общей точкой в схеме (если первый общий вывод подключался к базе VT1, то второй – эмиттеру VT2/контакту динамика, или наоборот).

5.При желании выключатель можно исключить из схемы.

В качестве примера.

Еще одна простая реализация на схеме ниже.

Более сложная схема

Если вам нужна возможность регулировки звуковых частот в заданном диапазоне, то возможно, вам пригодится схема ниже.

Низких частот предназначены для получения на выходе устройства периодических низкочастотных электрических сигналов с заданными параметрами (форма, амплитуда, частота сигнала).

КР1446УД1 (рис. 35.1) представляет собой сдвоенный гай- to-rail ОУ общего назначения. На основе этой микросхемы могут быть созданы устройства разнообразного назначения, в частности, электрических колебаний, которых приведены на рис. 35.2-35.4 . (рис. 35.2):

♦ одновременно и синхронно вырабатывает импульсы напряжения прямоугольной и пилообразной формы;

♦ имеет единую для обоих ОУ искусственную среднюю точку, образованную делителем напряжения R1 и R2 .

На первом из ОУ построен , на втором - Шмитта с широкой петлей гистерезиса (U raCT =U nHT ;R3/R5), точными и стабильными порогами переключения. Частота генерации определяется по формуле:

f =———– и составляет для указанных на схеме номиналах 265 Ги. С

Рис. 35.7. Цоколевка и состав микросхемы КР 7446УД7

Рис. 35.2. генератора прямоугольных- треугольных импульсов на микросхеме КР1446УД 7

изменением напряжения питания от 2,5 до 7 В эта частота изменяется не более чем на 1 %.

Усовершенствованный (рис. 35.3) вырабатывает импульсы прямоугольной формы, причем их частота от величины управляющего

Рис. 35.3. управляемого генератора прямоугольных импульсов

входного напряжения по закону

При изменении

входного напряжения от 0,1 до 3 В частота генерации линейно возрастает от 0,2 до 6 кГц .

Частота генерации генератора прямоугольных импульсов на микросхеме КР1446УД5 (рис. 35.4) линейно от величины приложенного управляющего напряжения и при R6=R7 определяется как:

5 В частота генерации линейно возрастает от 0 до 3700 Гц .

Рис. 35.4. генератора, управляемого напряжением

Так, при изменении входного напряжения от 0,1 до

На основе микросхем TDA7233D, используя в качестве единой основы базовый элемент, рис. 35.5, а, можно собрать достаточно мощные импульсов (), а также напряжения, рис. 35.5 .

Генератора (рис. 35.5, 6, верхняя) работает на частоте 1 кГц, которая определяется подбором элементов Rl, R2, Cl, С2. Емкость переходного конденсатора С задает тембр и громкость сигнала.

Генератора (рис. 35.5, б, нижняя), вырабатывает двухтональный сигал при условии индивидуального подбора емкости конденсатора С1 в каждом из использованных базовых элементов, например, 1000 и 1500 пФ.

Напряжения (рис. 35.5, в) работают на частоте около 13 кГц (емкость конденсатора С1 снижена до 100 пФ):

♦ верхний - вырабатывает отрищ гельное относительно общей шины напряжение;

♦ средний - вырабатывает удвоенное относительно напряжения питания положительное;

♦ нижний - вырабатывает в зависимости от коэффициента трансформации разнополярное равновеликое напряжение с гальванической (при необходимости) развязкой от источника питания.

Рис. 35.5. нештатного применения микросхем TDA7233D: а – базовый элемент; б - в качестве генераторов импульсов; в - в качестве преобразователей напряжения

При сборке преобразователей следует учитывать, что на диодах выпрямителей теряется заметная часть выходного напряжения. В этой связи в качестве VD1, VD2 рекомендуется использовать Шоттки. Ток нагрузки бестрансформаторных преобразователей может достигать 100-150 мА.

Прямоугольных импульсов (рис. 35.6) работает в диапазонах частот 60-600 Гц\ 0,06-6 кГц; 0,6-60 кГц . Для коррекции формы генерируемых сигналов может быть использована цепочка (нижняя часть рис. 35.6), подключаемая к точкам А и В устройства.

Охватив ОУ положительной обратной связью, нетрудно перевести устройство в режим генерации прямоугольных импульсов (рис. 35.7).

Импульсов с плавной перестройкой частоты (рис. 35.8) может быть выполнен на основе микросхемы DA1 . При использовании в качестве DA1 1/4 микросхемы LM339 регулировкой потенциометра R3 рабочая частота перестраивается в пределах 740- 2700 Гц (номинал емкости С1 в первоисточнике не указан). Исходная частота генерации определяется произведением C1R6.

Рис. 35.8. широкодиапазонного перестраиваемого генератора на основе компаратора

Рис. 35.7. генератора прямоугольных импульсов на частоту 200 Гц

Рис. 35.6. НЧ-генератора прямоугольных импульсов

На основе компараторов типа LM139, LM193 и им подобных могут быть собраны:

♦ прямоугольных импульсов с кварцевой стабилизацией (рис. 35.9);

♦ импульсов с электронной перестройкой .

Стабильных по частоте колебаний или так называемый «часовой» прямоугольных импульсов может быть выполнен на компараторе DAI LTC1441 (или ему подобном) по типовой схеме, представленной на рис. 35.10. Частота генерации задается кварцевым резонатором Ζ1 и составляет 32768 Гц. При использовании линейки делителей частоты на 2 на выходе делителей получают прямоугольные импульсы частотой 1 Гц. В небольших пределах рабочую частоту генератора можно понижать, подключая параллельно резонатору небольшой емкости.

Обычно в радиоэлектронных устройствах используют LC и RC- . Менее известны LR- , хотя на их основе могут быть созданы устройства с индуктивными датчиками,

Рис. 35.11. LR-генератора

Рис. 35.9. генератора импульсов на компараторе LM 7 93

Рис. 35.10. «часового» генератора импульсов

Обнаружители электропроводки, импульсов и т. д.

На рис. 35.11 приведена простого LR-геиератора прямоугольных импульсов, работающего в диапазоне частот 100 Гц - 10 кГц . В качестве индуктивности и для звукового

контроля работы генератора используется телефонный капсюль ТК-67. Перестройка частоты осуществляется потенциометром R3.

Работоспособен при изменении напряжения питания от 3 до 12,6 В. При понижении напряжения питания с 6 до 3-2,5 В верхняя частота генерации повышается с 10-11 кГц до 30-60 кГц.

Примечание.

Диапазон генерируемых частот может быть расширен до 7-1,3 МГц (для микросхемы ) при замене телефонного капсюля и резистора R5 на катушку индуктивности. В этом случае при отключении диодного ограничителя на выходе устройства можно получить сигналы, близкие к синусоиде. Стабильность частоты генерации устройства сопоставима со стабильностью RC-генераторов.

Звуковых сигналов (рис. 35.12) могут быть выполнены К538УНЗ . Для этого достаточно вход и выход микросхемы соединить конденсатором или его аналогом - пьезокерамическим капсюлем. В последнем случае капсюль выполняет также роль звукоизлучагеля.

Частоту генерации можно менять, подбирая емкость конденсатора. Параллельно или последовательно пьезокерамическому капсюлю для подбора оптимальной частоты генерации можно включить . Напряжение питания генераторов 6-9 В.

Рис. 35.72. звуковых частот на микросхеме

Для экспресс-проверки ОУ может быть использована генератора звуковых сигналов, представленная на рис. 35.13 . Тестируемую микросхему DA1 типа , у или иных, имеющих аналогичную цоколевку, вставляют в панельку, после чего включают питание. В случае, если исправна, пьезокерамический капсюль НА1 излучает звуковой сигнал.

Рис. 35.13. звукового генератора - испытателя ОУ

Рис. 35.14. генератора прямоугольных импульсов на ОУКР1438УН2

Рис. 35.15. генератора синусоидальных сигналов на ОУКР1438УН2

Сигналов прямоугольной формы на частоту 1 кГц, выполненный на микросхеме КР1438УН2, показан на рис. 35.14 . стабилизированных по амплитуде синусоидальных сигналов на частоту 1 кГц приведен на рис. 35.15 .

Генератора , вырабатывающего сигналы синусоидальной формы, представлена на рис. 35.16. Этот работает в диапазоне частот 1600-5800 Гц, хотя при частотах свыше 3 кГц форма сигнала все более отдаляется от идеала, а амплитуда выходного сигнала падает на 40 %. При десятикратном увеличении емкостей конденсаторов С1 и С2 полоса перестройки генератора с сохранением синусоидальной формы сигнала понижается до 170-640 Гц при неравномерности амплитуды до 10 %.

Рис. 35.7 7. генератора синусоидальных колебаний на частоту 400 Гц