Изучение мела под микроскопом. Обычные предметы под микроскопом Разные предметы под микроскопом

Практическая работа № 5 Изучение мела под микроскопом.

Цель: изучить мел, зарисовывать его строение, сделать выводы о происхождении.

Во всех морях и океанах обитают одноклеточные организмы, тело которых заключено в раковину. По современным представлениям они составляют особый тип Фораминиферы (от лат. «форамин» – отверстие и «ферре» – нести). Раковины фораминифер обычно имеют несколько камер с отверстиями в стенках, через которые высовываются ложноножки.

Большинство фораминифер живут на дне морей, так как тяжелая раковина не позволяет им всплывать на поверхность воды. Но есть виды, обитающие в толще воды; их раковины имеют шипы, увеличивающие общую поверхность, что облегчает парение в водной среде

Известковые раковины погибших фораминифер оседают на дно моря. Со временем они спрессовываются, образуя пласты осадочных горных пород – известняки (мел). Человек давно оценил достоинства осадочных горных пород, образуемых из скелетов простейших. Например, известняк использовался при строительстве египетских пирамид, храмов Владимиро-Суздальской Руси, белоснежных домов Севастополя, старых зданий Парижа, Рима, Вены и других городов мира.

Радиолярии, или лучевики, – исключительно морские простейшие. Радиолярии населяют южные моря с большой концентрацией солей. Живут они преимущественно в верхних, более насыщенных кислородом слоях воды.

Для радиолярий характерно многообразие форм. Наиболее распространены шаровидные радиолярии с длинными нитеобразными ложноножками и радиально расположенными лучами кремнеземного скелета. Отсюда происходит их второе название – лучевики (см. рис. 8).

Характерный признак этих простейших – наличие внутриклеточной центральной капсулы и внутреннего скелета. Внутри капсулы находятся одно или несколько ядер и включения органических веществ, например капли жира. Это делает радиолярий более легкими, и они «парят» в толще воды.

Питаются радиолярии мельчайшими водорослями и простейшими животными, захватывая их ложноножками.

Подобно фораминиферам, радиолярии играют важную роль в образовании осадочных горных пород. Плотные слои, состоящие из скелетов радиолярий, в технике называют горной мукой или трепелом. Его используют для полировки металлических и стеклянных изделий, а также для изготовления тонкой наждачной бумаги.

Выполни задания:

    Прочитайте текст;

    Объясните происхождение мела (известняка) - письменно в тетради;

    Какие условия необходимы для образование мела (известняка)?

    Как люди используют мел (известняк)- письменно в тетради;

    Зарисуйте в тетради как выглядит мел под микроскопом, несколько радиолярий и фораминифер;

    Сделайте вывод о строении мела (известняка) – письменно в тетради.

По-настоящему мощный микроскоп – не та вещь, которую покупают для развлечения, но уж если он есть, без дела ему не лежать. Мы не раз доказывали, что даже самая старинная безделушка в доме становится невероятным, сюрреалистическим, поразительным, порой даже пугающим произведением искусства, если смотреть на нее через микроскоп. Это словно глазок в параллельный мир.

Не понимаете, о чем я? Тогда взгляните на шокирующие разум увеличенные изображения:

8. Мел

Мел в натуральную величину [publicphoto.org ]

Мел используют в школе, для игры в классики. Если его растереть в порошок, получится сходство с песком и еще кое-чем… В общем, мел, как мы его знаем, не очень интересен.


Крупным планом: фораминиферы [PLOS Biology ]

Хмм, похоже на футбольный мяч. На самом деле раковины фораминифер являются основным компонентом мела. Фораминиферы – это простейшие одноклеточные организмы, имеющие наружный скелет (раковину).


Кошерная соль в натуральную величину [blogspot.ru ]

Кошерная соль крупнее обычной и отличается свойством впитывать кровь мяса, словно солевой Дракула.

Кошерная соль крупным планом [Museum of Science ]

Кристалл кошерной соли сильно напоминает древний храм.


Кристаллы кошерной соли под микроскопом [science photo library ]

А вот еще один снимок - чтобы вы убедились, что вся кошерная соль состоит из «пирамидок».


Апельсиновый сок в натуральную величину [blogspot.ru ]

Перед вами самый обычный апельсиновый сок откровенно оранжевого цвета, но что мы увидим под микроскопом?

Апельсиновый сок под микроскопом [telegraph.co.uk ]

Как оказывается, апельсиновый сок содержит лишь чуть оранжевого, более напоминая вид внутри калейдоскопа. Итак, теперь вы знаете, что, наслаждаясь по утрам апельсиновым соком, вы пьете сжиженные осколки всех цветов радуги.

5. Снег


Всеми нами любимый снег [picturesofwinter.net ]

Необычайно красивые частички ледяной поэзии, способные вызвать искреннюю детскую радость, а также обрушиться неудержимой снежной бурей на невезучего путника, имевшего неосторожность в особенно морозный зимний день оказаться на улице.

Снег в увеличенном размере под микроскопом [Science Musings ]

Да, и это не поделка ребенка из бумаги, это самая настоящая снежинка под микроскопом. Ну что – это нам еще раз доказывает, что природа несовершенна!


www.wired.com ]

Еще раз посмотрим на снег под микроскопом.

4. Анатомия насекомых


Муха в нормальную величину [jhunewsletter.com ]

Муха цокотуха.


Муха крупным планом [Wikimedia Commons ]

Похоже на квадратного скорпиона!

Вполне возможно, что после увиденного вы перестанете так же беззаботно переносить соседство этих всяких вредных насекомых.

Укус клеща может вызвать болезнь Лайма. А вот и снимок того, чем он кусает (по-научному гипостома):


“Какой у тебя милый язычок!”

Эта гипостома принадлежит черноглазому клещу. Теперь взгляните на ножеобразный рот черноногого клеща:


Опасное существо

А вот увеличенное жало комара:


Жало комара под микроскопом [Ben133uk ]

Этим они пьют нашу кровь. Так что не стоит сожалеть об очередном комаре, павшем от вашей руки.


Морская вода крупным планом [wordpress.com ]

Вода – это жизнь.


Микроорганизмы, находящиеся в морской воде [N. Sullivan / NOAA / Department of Commerce ]

Это не сама по себе вода, а те, кто ее населяет. Все 247 квадрильонов микроорганизмов. Это диатомы - общее название мертвых водорослей, наводняющих океан и, так или иначе, попадающих иногда в ваши организмы (при купании в море, например). Некоторые выглядят аппетитно. Большинство, к сожалению, смахивает либо на сигары, либо на промышленные отходы.


Летучая зола в натуральную величину [www.manatts.com ]

Вы видите летучую золу все время, просто не знаете, что это. А это измельченный уголь, использующийся для укрепления бетона, асфальта. Правда, он очень радиоактивен, поэтому не стоит подходить к облачку такой смеси близко.


Летучая зола под микроскопом [wikimedia.org ]

Под микроскопом летучая зола похожа на мертвую планету с бесчисленными кратерами и безжизненными, скалистыми островами. А может, это очередная мыльная вечеринка. Или что-нибудь еще - в зависимости от вашего воображения, свои варианты можно озвучить в комментариях.

1. Акулья кожа


Нормальный размер кожи акулы [wordpress.com ]

Акулы – удивительные создания: если акула перестает двигаться, она умирает, акула может учуять крошечную капельку крови в огромном объеме воды, еще не рожденные дети акулы едят друг друга в утробе матери, пока не останется лишь один. Единственное, что в ней не заслуживает внимание - ее кожа.


Кожа акулы под микроскопом [George Lauder ]

А, нет, ее кожа, оказывается, тоже крайне необычайна. Она сделана из зубов. Называются они, кстати, дентикулами, а их назначение - уменьшать сопротивление воды при движении акулы.


Кожа акулы, увеличенная во много раз [Australian Museum ]

Давайте увеличим еще. Кожа акулы под микроскопом напоминает острые зубчики, поэтому раньше ее применяли в качестве полировочного материала (в наше время используется наждачная бумага). Боразо – так называется кожа акулы с полированными чешуйками, которая является самой дорогостоящей кожей в мире.

Организм человека - это настолько сложный и слаженный "механизм", что большинство из нас даже представить не может! Эта серия фотографий, сделанных с помощью электронной микроскопии, поможет вам чуть больше узнать о своём организме и увидеть то, что мы в своей обычной жизни увидеть не можем. Добро пожаловать в органы!

Альвеолы лёгких с двумя красными кровяными тельцами (эритроцитами). (фото CMEABG-UCBL / Phanie)


30-кратное увеличение основания ногтя.


Радужная оболочка глаза и прилегающие структуры. В правом нижнем углу - край зрачка (синим цветом). (фото STEVE GSCHMEISSNER/SCIENCE PHOTO LIBRARY)


Красные кровяные тельца вываливаются (если можно так сказать) из разорванного капилляра.


Нервное окончание. Это нервное окончание было вскрыто, чтобы увидеть везикулы (оранжевого и синего цветов), содержащие химические вещества, которые используются для передачи сигналов в нервной системе. (фото TINA CARVALHO)


Свернувшаяся кровь.


Красные кровяные тельца в артерии.


Лёгкие человека.


Рецепторы вкуса на языке.


Ресницы, 50-кратное увеличение.


Подушечка пальца, 35-кратное увеличение. (фото Richard Kessel)


Потовая пора, выходящая на поверхность кожи.


Кровеносные сосуды, идущие от соска зрительного нерва (места вступления зрительного нерва в сетчатку).


Яйцеклетка, дающая начало новому организму, является самой большой клеткой в человеческом организме: её вес равен весу 600 сперматозоидов.


Сперматозоиды. Лишь один сперматозоид проникает в яйцеклетку, преодолевая слой небольших клеток, которые её окружают. Как только он в неё попадает, уже никакой другой сперматозоид сделать это уже не сможет.


Эмбрион человека и сперматозоиды. Яйцеклетка была оплодотворена 5 дней назад, при этом некоторые оставшиеся сперматозоиды всё ещё к ней прилипают.


8-дневный эмбрион в начале своего жизненного цикла...

Без сомнения, микромир может впечатлить даже тех, кто решил связать свою жизнь с наукой. Что уж говорить о любознательных новичках или школьниках, он удивляет даже тогда, когда человек к этому внутренне готов. И еще раз это докажет изучение мела под микроскопом . Одноименная лабораторная работа входит в школьную программу 7 класса по биологии. Однако, юным биологам будет куда интереснее разобраться во всем самостоятельно, поэкспериментировать и сформулировать свои первые выводы.

Изучение мела под микроскопом желательно проводить на той стадии обучения, когда исследователь способен правильно обращаться с оптическим прибором - понимает, что такое подсветка, фокусировка и т.д. Об этом было написано не мало и основной акцент хотелось бы сделать на теоретической и практической части в рамках эксперимента.

Являясь породой органического происхождения мел содержит останки микроскопических одноклеточных организмов. Это прежде всего радиолярии. Они могут обладать весьма причудливой формой, часто оказываются непохожими одна на другую. Отличает их наличие ложноножек - отростков, дающих тельцу возможность передвигаться. Распространена также конструкция скелета, сильно напоминающая скрученную ракушку, уменьшенную многократно. Кроме того, можно встретить фораминифер в виде белёсых раковин, преимущественно состоящего из карбоната кальция. Примешиваются к этому и частички морских или речных водорослей. Вот такой необычный состав у казалось бы однородной белой твердой субстанции, внимательное изучение под микроскопом которой, совершенно изменит сформировавшееся ранее представление.

Теперь о практике. Изучение мела под микроскопом должно проходить методом светлого поля в проходящем свете. Это подразумевает включение нижнего осветителя (для тех моделей, в которых он встроен) или настройку зеркальцем (если реализовано естественное освещение).

Опыт ставится в несколько этапов:

  1. Необходимо измельчить мел до состояния порошка.
  2. Полученная меловая пыль аккуратно насыпается на предметное стекло - небольшим слоем с горочкой по центру.
  3. С помощью пипетки капнуть одну каплю воды на стеклышко с мелом.
  4. Приготовленный микропрепарат располагается строго под объективом, центрируется на столике.
  5. Исследования начинаются с самого малого увеличения, затем кратность постепенно повышается.