Проблемы бурения нефтяных скважин. Общие сведения о бурении нефтяных и газовых скважин. Работы при бурении на нефть или газ

Бурение – сооружение горной направленной выработки малого диаметра и большой глубины. На поверхности земли располагается устье скважины, на дне – забой. Сегодня широко распространено бурение нефтяных и газовых скважин для добычи соответствующих полезных ископаемых.

Задачи и цели бурения под нефть и газ

В нынешние дни нефть и газ добываются из скважин. Несмотря на большое количество различных способов сделать скважину, они по-прежнему развиваются, разрабатываются новые методы, направленные на ускорения работ и удешевление их стоимости.

Современный процесс бурения состоит из следующих этапов:

  • Проходка ствола
  • Разобщение пластов
  • Освоение и эксплуатация скважины

Проходка скважин разделяется на два этапа, которые должны проходить параллельно друг другу: углубление забоя и его очистка от разрушаемых пород. Разобщение пород также проводится в два этапа: установка обсадных труб, их состыковка и герметизация между собой.

Несмотря на то, что в домашних условиях никто не будет бурить промышленную скважину на нефть и газ, интересно узнать сколько стоит нефтяная скважина и какие из методов получили наибольшее распространение.

Процесс бурения нефтяных скважин — видео

Основные методы бурения

Сегодня практикуются различные способы бурения нефтяных скважин, но наибольшее распространение среди них получили:

  • Роторное бурение с кессоном для скважины
  • Турбинное бурение
  • Винтовое бурение

Роторное бурение нефтяных скважин – один из популярных методов. Долото, проходящее в глубь пород почвы, вращается совместно с бурильными трубами. Крутящий момент подобной системы, в первую очередь, зависит от сопротивления пород, которые попадаются на пути.

Своей популярностью роторное бурение скважин обязано такими преимуществами, как возможность выдерживать большие перепады нагрузки на долото, независимость настроек от посторонних факторов, большой проход за один рейс.

Турбинное бурение скважин на нефть производится за счет установки, у которой долото взаимодействует с турбиной турбобура. Во вращение установка приводится потоком жидкости, которая циркулирует под высоким давлением через систему статоров и роторов. За счет этого в том числе выполняется подъем и откачка скважинной воды.

Крутящий момент не зависит от глубины скважины, свойств пород, частоты вращения и осевой нагрузки. При этом, коэффициент передачи при турбинном бурении на порядок выше, чем при роторном, но стоимость работ больше за счет потребности в большом количестве энергии, невозможно быстро перенастраивать параметры установки.

Винтовое бурение скважин нефти и газа заключается в том, что основной рабочий механизм состоит из большого числа винтовых механизмов, благодаря чему достигается оптимальная частота вращения долота. Несмотря на все перспективы, данный метод еще не получил должного распространения, но имеет огромный к этому потенциал.

Цена вопроса

Выяснив для себя как бурят нефтяные скважины, наверняка становится интересен вопрос о том, как много приходится затратить, чтобы пробурить очередной метр воронки.

Сегодня стоимость бурения нефтяной скважины весьма огромна и зависит от большого числа факторов:

  • Глубина скважины
  • Необходимость в приобретении обсадных пластиковых труб для скважин
  • Окружающие условия
  • Поставленные сроки

Если говорить о точных цифрах, то цена скважины глубиной 2000—3000 метров будет составлять от 30 до 60 млн рублей. Разведочное бурение будет стоить порядка 40-50% от стоимости бурения.

Первоначально в нашей стране использовали бурение для строительства соляных скважин. Информация о бурении скважин для поисков нефти относится к 30-м годам XIX века на Тамани. По предложению горного инженера Н.И. Воскобойникова в 1848 году на Биби-Эйбате была пробурена скважина с помощью бура, из которой получена нефть. Это была первая нефтяная скважина в мире, построенная с помощью бурения с использованием способа непрерывной очистки скважины от пробуренной породы промывкой жидкостью.

Скважины бурятся вертикальные, наклонные, горизонтальные. Широкое применение получил метод наклонно-направленного кустового бурения, когда с одной площадки бурится наклонным способом 15 и более скважин. Этот метод успешно применяется в условиях заболоченных мест, при бурении скважин с морских буровых платформ, для сохранения плодородных пахотных земель и т.д.

Понятие о скважине

Скважина - это горная выработка (вертикальная или наклонная) круглого сечения, глубиной от нескольких метров до нескольких километров, различного диаметра, сооружаемая в толще земной коры. Верхняя часть скважины называется устьем, нижняя часть скважины называется забоем, а боковая поверхность называется стволом скважины. Расстояние от устья скважины до забоя по оси ствола скважины называется длиной скважины. Проекция длины на вертикальную ось называется глубиной скважины.

Скважины бывают нефтяные, газовые, газоконденсатные, нагнетательные, наблюдательные, оценочные и т.д. Конструкция скважин должна отвечать следующим требованиям:

  • 1. Обеспечивать механическую устойчивость стенок ствола скважины и надежное разобщение всех (нефть, газ, вода) пластов друг от друга, свободный доступ к забою скважин спускаемого оборудования, недопущение обрушения горных пород в стволе скважины.
  • 2. Эффективную и надежную связь забоя скважины с продуктивным (нефтяным или газовым) пластом.
  • 3. Возможность герметизации устья скважины и обеспечение направления извлекаемой продукции в систему сбора, подготовки и транспорта нефти и газа или нагнетания в пласт агента воздействия.
  • 4. Возможность проведения в скважинах исследовательских работ, а также различных геолого-технических и ремонтно-профилактических работ.

Устойчивость стенок ствола скважин и разобщение пластов друг от друга достигается за счет бурения и спуска в скважину нескольких труб, называемых обсадными. Вначале скважина бурится на глубину 50-100 метров, в нее спускается стальная труба (1 = 500 мм и более - направление. Пространство между наружной стенкой трубы и стенкой скважины (породы) заполняется специальным тампонажным цементным раствором под давлением с целью недопущения обвала верхних пород и перетоков между верхними пластами. Затем скважина бурится меньшим диаметром долота на глубину 500-600 м, в нее спускается труба диаметром 249-273 мм и цементируется, как и направление, до устья. Эта колонна труб называется кондуктором и предназначена для предотвращения размыва верхних пластов, а также для создания канала для бурового глинистого раствора. После этого скважина бурится до проектного забоя. В нее спускается эксплуатационная колонна (стальная труба диаметром 146-168 мм), а пространство между трубой и породой под давлением заполняется цементным раствором до устья. Объем цементного раствораи давление его закачки определяются расчетом. После затвердения цементного раствора (обычно 48 часов) в межтрубном пространстве между наружной стенкой трубы и породой образуется цементный камень, который разобщает пласты между собой.

В зависимости от характеристики залежи, ее пластового давления, геологического разреза и др. конструкция скважин может быть одноколонной или многоколонной (двух или трех). Последняя колонна называется эксплуатационной.

После завершения бурения, спуска эксплуатационной колонны, ее цементации в скважине в интервале нефтяного или газового пласта делаются сквозные отверстия через стальную трубу и цементный камень с помощью специальных перфораторов.

После этого скважина осваивается и вводится в эксплуатацию. Скважина может быть с закрытым или открытым забоем. Открытый забой используется, когда продуктивный пласт сложен из плотных пород - карбонатных, известковых или плотных песчаников. При открытом забое скважина бурится до кровли продуктивного пласта, спускается эксплуатационная колонна и цементируется. Затем долотом меньшего диаметра через эксплуатационную колонну вскрывают (добуривают) продуктивный пласт. При этом не требуется перфорация, т.к. продуктивный пласт не перекрывается металлической трубой.

Если продуктивный пласт состоит из неустойчивых и слабоцементированных песчаников или известняков, то забой скважины оборудуется закрытым. При этом скважина бурится до проектной глубины (несколько ниже на 15-20 м продуктивного пласта создается так называемый «зумф»), в нее спускается эксплуатационная колонна, которая цементируется, а затем делается перфорация продуктивных участков пласта для сообщения пласта с забоем скважины. Если пласт представлен слабоцементированными песчаниками или алевролитами, то продуктивный пласт можно вскрывать при открытом забое с последующим спуском фильтра-хвостовика. Фильтр представляется в виде отверстий в эксплуатационной колонне в интервале продуктивного пласта.

Способы бурения нефтяных и газовых скважин.

Существует несколько способов бурения, но промышленное применение нашло механическое бурение. Механическое бурение подразделяется на ударное и вращательное. При ударном бурении буровой инструмент состоит из долота 1, ударной штанги 2, канатного замка 3. На бурящейся скважине устанавливается мачта 12, которая имеет в верхней части блок 5, оттяжной ролик балансира 6, вспомогательный ролик 8 и барабан бурового станка 11. Канат навивается на барабан 11 бурового станка. Буровой инструмент подвешивается на канате 4, который перекидывается через блок 5 мачты 12. При вращении шестерен 10 шатун 9, совершая возвратно-поступательное движение, приподнимает и опускает балансирную раму 6. При опускании рамы оттяжной ролик 7 натягивает канат и поднимает буровой инструмент над забоем скважины. При подъеме рамы канат опускается, долото падает на забой и разрушает породу. Для очистки забоя от разрушенной породы (шлама) поднимают буровой инструмент из скважины и спускают в нее желонку (удлиненный цилиндр типа ведра с клапаном в дне). Для повышения эффективности ударно-канатного бурения необходимо своевременно очищать забой скважины от выбуренной породы.

Вращательное бурение.

Нефтяные и газовые скважины в настоящее время бурятся методом вращательного бурения. При вращательном бурении разрушение горной породы происходит за счет вращающегося долота. Под весом инструмента долото входит в породу и под влиянием крутящего момента разрушает породу. Крутящий момент передается на долото с помощью ротора, устанавливаемого на устье скважины через колоннубурильных труб. Этот метод бурения называется роторным бурением. Если крутящий момент передается на долото от забойного двигателя (турбобура, электробура), то этот способ называют турбинным бурением.

Турбобур - это гидравлическая турбина, приводимая во вращение с помощью нагнетаемой насосами в скважину промывочной жидкости.

Электробур представляет собой электродвигатель в герметичном исполнении, электрический ток к нему подается по кабелю с поверхности.

Буровая вышка - это металлическое сооружение над скважиной для спуска и подъема бурового инструмента с долотом, забойных двигателей, обсадных труб, размещения бурильных свечей после их подъема из скважины и т.д.

Вышки выпускаются нескольких модификаций. Основные характеристики вышек - это грузоподъемность, высота, емкость «магазинов» (место длясвечей бурильных труб), размеры нижнего и верхнего оснований, вес (масса вышки).

Грузоподъемность вышки - это максимальная, предельно допустимая нагрузка на вышку в процессе бурения скважины. Высота вышки определяет длину свечи, которую можно извлечь из скважины, от величины которой зависит продолжительность спускоподъемных операций.

Для бурения скважин на глубину 400-600 м применяется вышка высотой 16-18 м, на глубину 2000-3000 м - высотой 42 м, а на глубину от 4000 до 6500 м - 53 м. Емкость «магазина» показывает, какая суммарная длина бурильных труб диаметром 114-168 мм может быть размещена в них. Размеры верхнего и нижнего оснований характеризуют условия буровой бригады с учетом размещения бурового оборудования, бурильного инструмента и средств механизации спускоподъемных операций. Размеры верхнего основания вышек составляют 2x2 или 2,6x2,6 м, а нижнего - 8x8 или 10x10 м.

Общая масса буровых вышек составляет десятки тонн.

Цикл строительства скважины.

Перед началом бурения на месте бурения скважины площадку освобождают от посторонних предметов, при наличии леса его вырубают и выкорчевывают. Если бурение будет вестись в заболоченной местности, то предварительно отсыпают дорогу до места буровой, а также отсыпают площадку, ликвидируя заболоченность, под буровой установкой. Делают планировку площадки, подводят линию электропередачи, связь и водовод.

Буровые вышки, если позволяет рельеф местности и расстояние, перевозят без разборки на специальных гусеничных тележках или на санях с полозьями, а также возможен метод пневмопередвижки. После перевозки и установки на месте буровой вышки начинают монтаж остального оборудования, т.е. монтаж поршневых насосов с дизельным приводом или насосов с электроприводом; систему очистки бурового раствора, электрощитовую, устьевое оборудование (ротор, превентор, гидравлический индикатор веса), буровое укрытие для привышечных сооружений и т.д. Если бурение начинается на новой площади, удаленной- от места ведения буровых работ, в этом случае все оборудование, включая буровую вышку, насосный блок, очистные сооружения и т.д., завозят в разобранном виде на буровую площадку и здесь начинают собирать буровую вышку и все остальное оборудование.

После монтажа буровой вышки и всего оборудования начинают проводить подготовительные работы к бурению скважины.

К подготовительным работам относятся:

  • 1. Оснастка талевого блока и кронблока стальным канатом и подвеска подъемного крюка.
  • 2. Установка и опробование средств малой механизации.
  • 3. Сборка и подвеска к крюку вертлюга квадрата (ведущая труба), присоединение гибкого высоконапорного шланга к трубе-стояку и к вертлюгу.
  • 4. Центровка вышки.
  • 5. Установка ротора.
  • 6. Бурение направления скважины.

Скважины бурят вертикальные, наклонно-направленные и горизонтальные. Долгое время основным видом бурения скважин было вертикальное бурение. Последние годы все чаще стал применяться метод наклонно-направленного бурения, т.е. когда, согласно проектам на бурение, скважина бурится по траектории с отклонением от вертикали. Обычно наклонные скважины целесообразно бурить под дно моря, реки, озера, а также под горы, овраги; в болотистой местности, заповедных лесах, под крупные промышленные объекты, города и села. Наклонные скважины также применяют при ликвидации открытых нефтяных и газовых фонтанов, а также в целях сохранения плодородных земель, с целью снижения стоимости бурения скважин за счет сокращения подготовительных работ и коммуникаций (связь, электроэнергия, водоводы и т.д.). Для отклонения профиля скважины от вертикали применяют специальные приспособления. К ним относятся: кривой переводник, кривая бурильная труба, различного вида отклонители и т.д. Все больше и больше в нашей стране в последние годы применяется горизонтальное бурение скважин и бурение боковых горизонтальных стволов скважин в отработанных и нерентабельных скважинах, где имеются невыработанные пропластки с нефтью.

Перфорация скважин. После того как обсадные трубы спущены в скважину и зацементированы, против продуктивной части пласта при помощи перфораторов делают отверстия в эксплуатационной колонне и цементном камне для соединения продуктивной части пласта с забоем скважины. Эта операция называется перфорацией. Применяются различные методы перфорации скважин: пулевая, торпедная, кумулятивная и гидропескоструйная.

Пулевой перфоратор (ПП) представляет собой трубу длиной 1 м и диаметром 100 мм, которая заряжается спрессованным порохом и 10 стальными пулями. На каротажном кабеле пулевой перфоратор спускают в скважину, заполненную глинистым раствором, устанавливают против заданного интервала продуктивного пласта и делают выстрелы. Глубина отверстий в породе не превышает 5-7 см. Многие пули застревают в эксплуатационной колонне, в цементном камне, и только небольшое число их пробивает колонну и цементный камень. Практически в настоящее время не находит применения.

Торпедный перфоратор (ТП). Торпедная перфорация осуществляется аппаратами, спускаемыми на кабеле и стреляющими разрывными снарядами диаметром 22 мм. Аппарат состоит из секций, в каждой из которых имеется по два горизонтальных ствола. Снаряд снабжен детонатором накольного типа. При остановке снаряда происходит взрыв внутреннего заряда и растрескивание окружающей горной породы. Глубина каналов, по данным испытаний, составляет 100-160 мм, диаметр канала 22 мм. На 1 м продуктивной части пласта делается не более четырех отверстий, так как при торпедной перфорации часто происходит разрушение обсадной колонны. Так же, как и пулевая, торпедная перфорация применяется очень ограниченно.

В настоящее время в основном применяют кумулятивную перфорацию (ПК). Кумулятивные перфораторы имеют заряды с конусной выемкой, которые позволяют фокусировать взрывные потоки газов и направлять их с большой скоростью перпендикулярно к стенкам скважины.

В кумулятивный перфоратор вставляют шашку из спрессованного порошкообразного взрывчатого вещества, которая имеет конусную выемку, облицованную металлической плашкой.

Кумулятивная перфорация осуществляется стреляющими перфораторами, не имеющими пуль или снарядов. Прострел колонны, цементного камня и породы достигается за счет сфокусированного взрыва. Такая фокусировка обусловлена конической формой поверхности заряда взрывчатого вещества (ВВ), облицованной тонким металлическим покрытием (листовая медь толщиной 0,6 мм). Энергия взрыва в виде тонкого пучка газов - продуктов облицовки - пробивает канал. Кумулятивнаяструя имеет скорость в головной части до 6-8 км/с и создает давление 3-5 тыс. мПа.

При выстреле кумулятивным зарядом в колонне и цементном камне образуется узкий перфорационный канал глубиной до 350 мм и диаметром в средней части 8-14 мм.

На нефтяных промыслах применяют также гидропескоструйный перфоратор (ГПП).

Гидропескоструйный перфоратор состоит из толстостенного корпуса, в который ввинчивается до десяти насадок из абразивно-стойкого материала (керамики, твердых сплавов) диаметрами отверстий 3-6 мм.

Гидропескоструйный перфоратор спускают в скважину на насосно-компрессорных трубах. Перед проведением перфорации скважины с поверхности в НКТ бросают шар, который перекрывает сквозное отверстие перфоратора. После этого с помощью насосных агрегатов АН-500 или АН-700 через НКТ в скважину закачивают жидкость с песком. Нагнетаемая жидкость с песком выходит только через насадки. При выходе из насадок развиваются огромные скорости абразивной струи. В результате за короткое время пробиваются отверстия в обсадных трубах, цементном камне и породе, ствол скважины соединяется с продуктивным пластом. В зависимости от диаметра насадок, их числа и скорости закачки жидкости глубина перфорационных отверстий достигает 40-60 см. При этом сохраняется герметичность цементного камня за колонной. При гидропескоструйной перфорации на устье скважины создается давление до 40 мПа. Темп прокачки жидкости с песком составляет 3-4 л/с на одну насадку. При этом объемная скорость струи в насадке достигает 200-300 м3/сут, а перепад давления 18-22 мПа. Продолжительность перфорации одного интервала - 15-20 минут. По окончании перфорации заданного интервала перфоратор поднимают и устанавливают на следующий интервал, и операция повторяется.

вызов притока в скважину.

В промысловой практике применяют следующие способы вызова притока жидкости из продуктивного пласта к забою скважины: тартание, поршневание, замена жидкости в скважине на более легкую, компрессорный метод, прокачка газожидкостной смеси, откачка глубинными насосами. Перед освоением скважины на устье устанавливается арматура. В любом случае на фланце обсадной колонны должна устанавливаться задвижка высокого давления для перекрытия ствола скважины в аварийных ситуациях.

Поршневание . При поршневании (свабировании) поршень, или сваб, спускается в НКТ на стальном канате. Поршень (сваб) представляет собой трубу диаметром 25-37,5 мм с клапаном, в нижней части открывающимся вверх. На наружной поверхности трубы (в стыках) устанавливаются резиновые манжеты (3-4 шт.), армированные проволочной сеткой. При спуске сваба под уровень жидкость в скважине перетекает через клапан в пространство над поршнем. При подъеме сваба клапан закрывается, а манжеты, распираемые давлением столба жидкости над ними, прижимаются к стенкам НКТ и уплотняются. За один подъем поршень выносит столб жидкости, равный глубине погружения его под уровень жидкости. Глубина погружения ограничивается прочностью тартального каната и обычно составляет 100-150 м.

Тартание - это извлечение жидкости из скважины желонкой, спускаемой на стальном (16 мм) канате с помощью лебедки на тракторе (автомобиле). Изготавливается желонка из трубы длиной 7,5-8 м, имеющей в нижней части клапан со штоком, открывающимся при упоре на шток. В верхней части желонки имеется скоба для крепления каната. Диаметр желонки не должен превышать 0,7 диаметра обсадной колонны. За один спуск желонка выносит из скважины жидкость объемом не более 0,06 м3.

Тартание - трудоемкий и малопроизводительный способ. В то же время тартание дает возможность извлекать глинистый раствор с забоя и контролировать уровень жидкости в скважине. Многократные спуск и подъем поршня приводят к постепенному понижению уровня жидкости в скважине. Большим недостатком этого метода является то, что приходится работать при открытом устье, что связано с опасностью выброса жидкости и открытого фонтанирования. Поэтому поршневание применяется в основном при освоении нагнетательных скважин.

Замена жидкости в скважине. Скважина, законченная бурением, обычно заполнена глинистым раствором. Если заменить глинистый раствор в скважине водой или дегазированной нефтью, то уменьшим забойное давление. Этим способом осваиваются скважины с большим пластовым давлением и хорошими коллекторскими свойствами.

Компрессорный способ освоения. Компрессорный способ имеет более широкое применение при освоении скважин. В скважину перед освоением спускаются насосно-компрессорные трубы, а устье оборудуется фонтанной арматурой. К межтрубному пространству через нагнетательный трубопровод подсоединяют передвижной компрессор или газовую линию с высоким давлением от газокомпрессорной станции. При нагнетании газа в скважину жидкость в межтрубном пространстве оттесняется до башмака НКТ или до пускового отверстия (3-4 мм) в НКТ, сделанного заранее на глубине 700-800 м от устья, и прорывается в НКТ. Газ, попадая в НКТ, газирует жидкость в них. В результате давление на забое значительно снижается. Регулируя расход газа, изменяют плотность газожидкостной смеси в трубах, а соответственно, и давление на забое скважины. При забойном давлении ниже пластового начинается приток жидкости и газа в скважину. После получения устойчивого притока скважина переводится на стационарный режим работы. Этот способ позволяет сравнительно быстро получить значительные депрессии на пласт, что особенно важно для эффективной очистки призабойной зоны скважины. В условиях крепких пород (песчаников, известняков) это приводит к интенсивной очистке порового пространства от кальматирующего (закупоривающего) материала, а в условиях рыхлых пород - к разрушению призабойной зоны пласта. Чтобы обеспечить более плавный пуск скважины, проводят закачку аэрированной нефти через межтрубное пространство с использованием компрессора, промывочного агрегата и смесителя. После выброса газожидкостной смеси через выкидную линию в приемную емкость подачу аэрированной нефти постепенно уменьшают до полного ее прекращения.

Освоение скважин сжатым воздухом в основном проводят применением передвижных компрессоров УКП-80 или КС-100. Компрессор УКП-80 развивает давление 8 МПа с подачей воздуха 8 м /мин, а КС-100 развивает давление 10 МПа с подачей воздуха 16 м3/мин. Следует отметить, что при освоении скважин сжатым воздухом возможны взрывы, так как при содержании углеводородного газа в смеси с воздухом от 6 до 15% образуется гремучая смесь.

Освоение скважин закачкой газированной жидкости.

Освоение скважин газированной жидкостью заключается в том, что вместо газа или воздуха в межтрубное пространство закачивается смесь газа с жидкостью (вода или нефть). Плотность такой газожидкостной смеси зависит от соотношения расходов закачиваемых газа и жидкости, что позволяет регулировать параметры процесса освоения. С учетом того, что плотность газожидкостной смеси больше плотности чистого газа, этот метод позволяет осваивать глубокие скважины компрессорами, которые создают меньшее давление.

Освоение нагнетательных скважин. Нагнетательные скважины должны иметь высокую приемистость по всей толщине продуктивного пласта. Этого можно достичь хорошей очисткой призабойной зоны продуктивного пласта от грязи и других кальматирующих материалов. Призабойную зону пласта очищают перед пуском нагнетательной скважины под закачку теми же способами, что и при освоении нефтедобывающих скважин, но дренирование призабойных зон пласта проводят по времени значительно дольше. Длительность промывки достигает одних суток и более и зависит от количества механических примесей, содержащихся в выходящей из скважины воде. Содержание механических примесей в конце промывки не должно превышать 10-20 мг/л.

Максимальная очистка порового пространства призабойной зоны пласта происходит с использованием таких способов дренирования, которые позволяют создавать очень высокие депрессии на пласт, обеспечивающие высокие скорости фильтрации жидкости к забоям скважин в условиях неустановившихся режимов. Чаще всего дренирование пласта проводят методами самоизлива, аэризации жидкости, откачки с применением высокопроизводительных погружных центробежных насосов и др.

При освоении нагнетательных скважин широкое применение получил метод переменных давлений (МПД). При использовании этого метода в призабойную зону пласта через НКТ с использованием насосных агрегатов в течение короткого времени периодически создают высокое давление нагнетания, которое затем резко сбрасывают через межтрубное пространство (проводят «разрядку»). При закачке жидкости с высоким давлением в призабойной зоне пласта раскрываются имеющиеся и образуются новые трещины, а при сбрасывании давления происходит приток жидкости к забою с большой скоростью. Хорошие результаты получают при использовании способа периодического дренирования призабойных зон созданием многократных мгновенных высоких депрессий на забое.

Иногда плохая приемистость нагнетательных скважин происходит или из-за низкой природной проницаемости пород пласта, или большого количества глинистых пропластков, освоить которые проведением дренажа призабойных зон не удается. В таких случаях для увеличения приемистости нагнетательных скважин используют другие методы воздействия, которые позволяют увеличивать диаметры фильтрационных каналов или создавать систему трещин в породах пласта. К таким методам относятся различные кислотные обработки, тепловые методы, гидравлический разрыв пласта, щелевая разгрузка, обработка пласта оксидатом и т.д.

Конструкцию скважин на нефть и газ разрабатывают и уточняют в соответствии с конкретными геологическими условиями бурения в заданном районе. Она должна обеспечить выполнение поставленной задачи, т.е. достижение проектной глубины, вскрытие нефтегазоносной залежи и проведение всего намеченного комплекса исследований и работ в скважине, включая ее использование в системе разработки месторождения.

Конструкция скважины зависит от сложности геологического разреза, способа бурения, назначения скважины, способа вскрытия продуктивного горизонта и других факторов.

Исходные данные для проектирования конструкции скважины включают следующие сведения:

    назначение и глубина скважины;

    проектный горизонт и характеристика породы-коллектора;

    геологический разрез в месте заложения скважины с выделением зон возможных осложнений и указанием пластовых давлений и давлении гидроразрыва пород по интервалам;

    диаметр эксплуатационной колонны или конечный диаметр скважины, если спуск эксплуатационной колонны не предусмотрен.

Порядок проектирования конструкции скважины на нефть и газ следующий.

    Выбирается конструкция призабойного участка скважины . Конструкция скважины в интервале продуктивного пласта должна обеспечивать наилучшие условия поступления нефти и газа в скважину и наиболее эффективное использование пластовой энергии нефтегазовой залежи.

    Обосновывается требуемое количество обсадных колонн и глубин их спуска . С этой целью строится график изменения коэффициента аномальности пластовых давлений k, и индекса давлений поглощения kпогл.

    Обосновывается выбор диаметра эксплуатационной колонны и согласовываются диаметры обсадных колонн и долот . Расчет диаметров ведется снизу вверх.

    Выбираются интервалы цементирования . От башмака обсадной колонны до устья цементируются: кондукторы во всех скважинах; промежуточные и эксплуатационные колонны в разведочных, поисковых, параметрических, опорных и газовых скважинах; промежуточные колонны в нефтяных скважинах глубиной свыше 3000 м; на участке длиной не менее 500 м от башмака промежуточной колонны в нефтяных скважинах глубиной до 3004) м (при условии перекрытия тампонажным раствором всех проницаемых и неустойчивых пород).

Интервал цементирования эксплуатационных колонн в нефтяных скважинах может быть ограничен участком от башмака до сечения, расположенного не менее чем на 100 м выше нижнего конца предыдущей промежуточной колонны.

Все обсадные колонны в скважинах, сооружаемых в акваториях цементируются по всей длине.

    Этапы проектирования гидравлической программы промывки скважины буровыми растворами.

Под гидравлической программой понимается комплекс регулируемых параметров процесса промывки скважины. Номенклатура регулируемых параметров следующая: показатели свойств бурового раствора, подача буровых насосов, диаметр и количество насадок гидромониторных долот.

При составлении гидравлической программы предполагается:

Исключить флюидопроявления из пласта и поглощения бурового раствора;

Предотвратить размыв стенок скважины и механическое диспергирование транспортируемого шлама с целью исключения наработки бурового раствора;

Обеспечить вынос выбуренной горной породы из кольцевого пространства скважины;

Создать условия для максимального использования гидромониторного эффекта;

Рационально использовать гидравлическую мощность насосной установки;

Исключить аварийные ситуации при остановках, циркуляции и пуске буровых насосов.

Перечисленные требования к гидравлической программе удовлетворяются при условии формализации и решения многофакторной оптимизационной задачи. Известные схемы проектирования процесса промывки бурящихся скважин основаны на расчетах гидравлических сопротивлений в системе по заданным подаче насосов и показателям свойств буровых растворов.

Подобные гидравлические расчеты проводятся по следующей схеме. Вначале, исходя из эмпирических рекомендаций, задают скорость движения бурового раствора в кольцевом пространстве и вычисляют требуемую подачу буровых насосов. По паспортной характеристике буровых насосов подбирают диаметр втулок, способных обеспечить требуемую подачу. Затем по соответствующим формулам определяют гидравлические потери в системе без учета потерь давления в долоте. Площадь насадок гидромониторных долот подбирают исходя из разности между максимальным паспортным давлением нагнетания (соответствующим выбранным втулкам) и вычисленными потерями давления на гидравлические сопротивления.

    Принципы выбора способа бурения: основные критерии выбора, учет глубины скважины, температуры в стволе, осложненности бурения, проектного профиля и др. факторов.

Выбор способа бурения, разработка более эффективных методов разрушения горных пород на забое скважины и решение многих вопросов, связанных со строительством скважины, невозможны без изучения свойств самих горных пород, условий их залегания и влияния этих условий на свойства горных пород.

Выбор способа бурения зависит от строения пласта, его коллекторских свойств, состава содержащихся в нем жидкостей и / или газов, числа продуктивных про-пластков и коэффициентов аномальности пластовых давлений.

Выбор способа бурения базируется на сравнительной оценке его эффективности, которая определяется множеством факторов, каждый из которых в зависимости от геолого-методических требований (ГМТ), назначения и условий бурения может иметь решающее значение.

На выбор способа бурения скважины оказывает влияние также целевое назначение буровых работ.

При выборе способа бурения следует руководствоваться целевым назначением скважины, гидрогеологической характеристикой водоносного пласта и глубиной его залегания, объемом работ по освоению пласта.

Сочетание параметров КНБК.

При выборе способа бурения кроме технико-экономических факторов следует учитывать, что, по сравнению с КНБК, на базе забойного двигателя роторные КНБК значительно технологичнее и надежнее в эксплуатации, устойчивее на проектной траектории.

Зависимость отклоняющей силы на долоте от кривизны скважины для стабилизирующих КНБК с двумя центраторами.

При выборе способа бурения кроме технико-экономических факторов следует учитывать, что по сравнению с КНБК на базе забойного двигателя роторные КНБК значительно технологичнее и надежнее в эксплуатации, устойчивее на проектной траектории.

Для обоснования выбора способа бурения в надсолевых отложениях и подтверждения изложенного выше вывода о рациональном способе бурения были проанализированы технические показатели турбинного и роторного бурения скв.

В случае выбора способа бурения с забойными гидравлическими двигателями, после расчета осевой нагрузки на долото необходимо выбрать тип забойного двигателя. Этот выбор осуществляется с учетом удельного момента на вращение долота, осевой нагрузки на долото и плотности бурового раствора. Технические характеристики выбранного забойного двигателя учитываются при проектировании частоты оборотов долота и гидравлической программы промывки скважины.

Вопрос о выборе способа бурения должен решаться на основе технико-экономического обоснования. Основным показателем для выбора способа бурения является рентабельность - себестоимость 1 м проходки. [1 ]

Прежде чем приступить к выбору способа бурения для углубления ствола с использованием газообразных агентов, следует иметь в виду, что их физико-механические свойства вносят вполне определенные ограничения, так как некоторые типы газообразных агентов неприменимы для ряда способов бурения. На рис. 46 показаны возможные сочетания различных типов газообразных агентов с современными способами бурения. Как видно из схемы, наиболее универсальными с точки зрения использования газообразных агентов являются способы бурения ротором и электробуром, менее универсальным - турбинный способ, который применяется только при использовании аэрированных жидкостей. [2 ]

Энерговооруженность ПБУ меньше влияет на выбор способов бурения и их разновидностей, чем энерговооруженность установки для бурения на суше, так - как кроме непосредственно бурового оборудования ПБУ оснащена вспомогательным, необходимым для ее эксплуатации и удержания на точке бурения. Практически буровое и вспомогательное оборудование работает поочередно. Минимально необходимая энерговооруженность ПБУ определяется энергией, потребляемой вспомогательным оборудованием, которая бывает больше необходимой для бурового привода. [3 ]

Восьмой, раздел технического проекта посвящен выбору способа бурения , типоразмеров забойных двигателей и буровых долог, разработке режимов бурения. [4 ]

Другими словами, выбор того или иного профиля скважины обусловливает в значительной степени выбор способа бурения 5 ]

Транспортабельность ПБУ не зависит от металлоемкости и энерговооруженности оборудования и не влияет на выбор способа бурения , так как ее буксируют без демонтажа оборудования. [6 ]

Другими словами, выбор того или иного типа профиля скважины обусловливает в значительной степенивыбор способа бурения , типа долота, гидравлической программы бурения, параметров режима бурения и наоборот. [7 ]

Параметры качки плавучего основания следует определять расчетным путем уже на начальных стадиях проектирования корпуса, так как от этого зависит рабочий диапазон волнения моря, при котором возможна нормальная и безопасная работа, а также выбор способа бурения , систем и устройств для снижения влияния качки на рабочий процесс. Снижение качки может быть достигнуто рациональным подбором размеров корпусов, взаимным их расположением и применением пассивных и активных средств борьбы с качкой. [8 ]

Наиболее распространенным методом разведки и эксплуатации подземных вод остается бурение скважин и колодцев. Выбор способа бурения определяют: степень гидрогеологической изученности района, цель работ, требуемая достоверность получаемой геолого-гидрогеологической информации, технико-экономические показатели рассматриваемого способа бурения, стоимость 1 м3 добываемой воды, срок существования скважины. На выбор технологии бурения скважин влияют температура подземных вод, степень их минерализации и агрессивность по отношению к бетону (цементу) и железу. [9 ]

При бурении сверхглубоких скважин предупреждение искривления стволов имеет очень важное значение в связи с отрицательными последствиями кривизны скважины при ее углублении. Поэтому при выборе способов бурения сверхглубоких скважин , и особенно их верхних интервалов, внимание следует уделять сохранению вертикальности и прямолинейно-ти ствола скважины. [10 ]

Вопрос о выборе способа бурения должен решаться на основе технико-экономического обоснования. Основным показателем для выбора способа бурения является рентабельность - себестоимость 1 м проходки. [11 ]

Так, скорость вращательного бурения с промывкой глинистым раствором превышает скорость ударно-канатного бурения в 3 - 5 раз. Поэтому решающим фактором при выборе способа бурения должен быть экономический анализ. [12 ]

Технико-экономическая эффективность проекта на строительство нефтяных и газовых скважин во многом зависит от обоснованности процесса углубления и промывки. Проектирование технологии этих процессов включает в себя выбор способа бурения , типа породо-разрушающего инструмента и режимов бурения, конструкции бурильной колонны и компоновки ее низа, гидравлической программы углубления и показателей свойств бурового раствора, типов буровых растворов и необходимых количеств химических реагентов и материалов для поддержания их свойств. Принятие проектных решений обусловливает выбор типа буровой установки, зависящей, помимо этого, от конструкции обсадных колонн п географических условий бурения. [13 ]

Применение результатов решений задачи создает широкую возможность проведения глубокого, обширного анализа отработки долот в большом количестве объектов с самыми разнообразными условиями бурения. При этом возможна также подготовка рекомендаций по выбору способов бурения , забойных двигателей, буровых насосов и промывочной жидкости. [14 ]

В практике сооружения скважин на воду получили распространение следующие способы бурения: вращательный с прямой промывкой, вращательный с обратной промывкой, вращательный с продувкой воздухом и ударно-канатный. Условия применения различных способов бурения определяются собственно техническими и технологическими особенностями буровых установок, а также качеством работ по сооружению скважин. Следует отметить, что при выборе способа бурения скважин на воду необходимо учитывать не только скорость проходки скважин и технологичность метода, но и обеспечение таких параметров вскрытия водоносного пласта, при которых деформация пород в призабойной зоне наблюдается в минимальной степени и ее проницаемость не снижается в сравнении с пластовой. [1 ]

Значительно сложнее выбрать способ бурения для углубления вертикального ствола скважины. Если при разбуривании интервала, выбранного исходя из практики бурения с использованием буровых растворов, можно ожидать искривления вертикального ствола, то, как правило, применяют пневмоударники с соответствующим типом долота. Если искривления не наблюдается, то выбор способа бурения осуществляется следующим образом. Для мягких пород (мягкие сланцы, гипсы, мел, ангидриты, соль и мягкие известняки) целесообразно применять бурение электробуром с частотами вращения долота до 325 об / мин. По мере увеличения твердости горных пород способы бурения располагаются в следующей последовательности: объемный двигатель, роторное бурение и ударно-вращательное бурение. [2 ]

С точки зрения повышения скорости и снижения себестоимости сооружения скважин с ПБУ интересен способ бурения с гидротранспортом керна. Этот способ при исключении отмеченных выше ограничений его применения может использоваться при разведке россыпей с ПБУ на поисковой и поисково-оценочной стадиях геологоразведочных работ. Стоимость бурового оборудования независимо от способов бурения не превышает 10 % общей стоимости ПБУ. Поэтому изменение стоимости только бурового оборудования не оказывает существенного влияния на стоимость изготовления и обслуживания ПБУ и на выбор способа бурения . Увеличение стоимости ПБУ оправдано лишь в том случае, если оно улучшает условия работы, повышает безопасность и скорость бурения, сокращает количество простоев из-за метеоусловий, расширяет по времени сезон буровых работ. [3 ]

    Выбор типа долота и режима бурения: критерии выбора, способы получения информации и ее обработки для установления оптимальных режимов, регулирования величины параметров .

Выбор долота производят на основе знания горных пород (г/п) слагающих данный интервал, т.е. по категории твердости и по категории абразивности г/п.

В процессе бурения разведочной, а иногда и эксплуатаци­нной скважины периодически отбираются породы в виде нетронутых целиков (кернов) для составления стратиграфи­еского разреза, изучения литологической характеристики пройденных пород, выявления содержания нефти, газа в порах пород и т. д.

Для извлечения на поверхность керна применяют колонковые долота (рис. 2.7). Состоит такое долото из бурильной головки 1 и колонкового набора, присоединенного к корпусу бурильной головки с помощью резьбы.

Рис. 2.7. Схема устройства колонкового долота: 1 - бурильная головка; 2 - керн; 3 - грунтоноска; 4 - корпус колонко­вого набора; 5 - шаровой клапан

В зависимости от свойств породы, в которой осуществляется бурение с отбором керна, применяют шарошечные, ал­мазные и твердосплавные бурильные головки.

Режим бурения - сочетание таких параметров, которые существенно влияют на показатели работы долота, которые бурильщик может изменить со своего пульта.

Pд [кН] – нагрузка на долото, n [об/мин] – частота вращения долота, Q [л/с] – расход(подача) пром. ж-ти, H [м] – проходка на долото, Vм [м/час] – мех. скорость проходки, Vср=H/tБ – средняя,

Vм(t)=dh/dtБ – мгновенная, Vр [м/час] – рейсовая скорость бурения, Vр=H/(tБ + tСПО + tВ), C [руб/м] – эксплуатационные затраты на 1м проходки, C=(Cд+Сч(tБ + tСПО + tВ))/H, Cд – себестоимость долота; Cч – стоимость 1часа работы бур. обор.

Этапы поиска оптимального режима - на стадии проектирования - оперативная оптимизация режима бурения - корректировка проектного режима с учетом инф., полученной в процессе бурения.

В процессе проектирования мы используем инф. полученную при бурении скв. в данном

регионе, в аналог. усл., данные по гоелог. разрезу скв., рекомендаций завода-изготовителя бур. инстр., рабочих хар-к забойных двигателей.

2 способа выбора долота на забое: графический и аналитический.

Шарошки в бурильной головке смонтированы таким обра­зом, чтобы порода в центре забоя скважины при бурении не разрушалась. Это создает условия для образования керна 2. Существуют четырёх-, шести- и далее восьмишарошечные бу­рильные головки, предназначенные для бурения с отбором керна в различных породах. Расположение породоразрушающих элементов в алмазных и твердосплавных бурильных го­ловках также позволяет разрушать горную породу только по периферии забоя скважины .

Образующаяся колонка породы поступает при углублении скважины в колонковый набор, состоящий из корпуса 4 и колонковой трубы (грунтоноски) 3. Корпус колонкового на­бора служит для соединения бурильной головки с бурильной колонной, размещения грунтоноски и защиты её от механи­ческих повреждений, а также для пропуска промывочной жидкости между ним и грунтоноской. Грунтоноска предназ­начена для приёма керна, сохранения его во время бурения и при подъеме на поверхность. Для выполнения этих функ­ций в нижней части грунтоноски устанавливаются кернорватели и кернодержатели, а вверху - шаровой клапан 5, про­пускающий через себя вытесняемую из грунтоноски жид­кость при заполнении её керном.

По способу установки грунтоноски в корпусе колонкового набора и в бурильной головке существуют колонковые доло­та со съемной и несъёмной грунтоноской.

Колонковые долота со съемной грунтоноской позволяют поднимать грунтоноску с керном без подъема бурильной ко­лонны. Для этого в бурильную колонну спускают на канате ловитель, с помощью которого извлекают из колонкового набора грунтоноску и поднимают ее на поверхность. Затем, используя этот же ловитель, спускают и устанавливают в корпусе колонкового набора порожнюю грунтоноску, и буре­ние с отбором керна продолжается.

Колонковые долота со съемной грунтоноской применяют при турбинном бурении, а с несъемной - при роторном.

    Принципиальная схема опробования продуктивного горизонта с помощью пластоиспытателя на трубах.

Пластоиспытатели весьма широко используются в бурении и позволяют получить наибольший объем информации об опробуемом объекте. Современный отечественный пластоиспытатель состоит из следующих основных узлов: фильтра, пакера, собственно опробывателя с уравнительным и главным впускным клапанами, запорного клапана и циркуляционного клапана.

    Принципиальная схема одноступенчатого цементирования. Изменение давления в цементировочных насосах, участвующих в этом процессе.

Одноступенчатый способ цементирования скважин наиболее распространен. При этом способе в заданный интервал подается тампонажный раствор за один прием.

Заключительный этап проведения буровых работ сопровождается процессом, который предполагает цементирование скважин. От того, насколько качественно будут проведены эти работы, зависит жизнеспособность всей конструкции. Основная цель, преследуемая в процессе проведения данной процедуры, заключается в замещении бурового раствора цементным, который имеет еще одно название – тампонажный раствор. Цементирование скважин предполагает введение состава, который должен затвердеть, превратившись в камень. На сегодняшний день существует несколько способов осуществления процесса цементирования скважин, наиболее часто используемому из них более 100 лет. Это одноступенчатое цементирование обсадной колонны, явленное миру в 1905 году и используемое сегодня лишь с некоторыми доработками.

Схема цементирования с одной пробкой.

Процесс цементирования

Технология осуществления цементирования скважин предполагает проведение 5 главных видов работ: первый – замешивание тампонажного раствора, второй – закачивание состава в скважину, третий – подача смеси выбранным методом в затрубное пространство, четвертый – затвердевание тампонажной смеси, пятый – проверка качества осуществленных работ.

Перед стартом работ должна быть составлена схема цементирования, которая имеет в основе технические расчеты процесса. Важно будет при этом взять во внимание горно-геологические условия; протяженность интервала, которому необходимо укрепление; характеристики конструкции скважинного ствола, а также его состояние. Следует использовать в процессе проведения расчетов и опыт осуществления таких работ в определенном районе.

    Рисунок 1. Схема процесса одноступенчатого цементирования.

На рис. 1 можно увидеть изображение схем процесса одноступенчатого цементирования. «I» – старт подачи смеси в ствол. «II» – это подача смеси, нагнетаемой в скважину, когда раствор перемещается вниз по обсадной колонне, «III» – это старт продавливания тампонажного состава в затрубное пространство, «IV» – это заключительный этап продавливания смеси. На схеме 1 – манометр, который отвечает за контроль уровня давления; 2 – цементировочная головка; 3 – пробка, расположенная сверху; 4 – нижняя пробка; 5 – обсадная колонна; 6 – стены скважины; 7 – стоп-кольцо; 8 – жидкость, предназначенная для продавливания тампонажной смеси; 9 – буровой раствор; 10 – цементная смесь.

    Принципиальна схема двухступенчатого цементирования с разрывом во времени. Достоинства и недостатки.

Ступенчатое цементирование с разрывом во времени.Интервал цементирования делят на две части, а в ок у границы раздела устанавливают специальную цементировочную муфту. Снаружи колонны над муфтой и под нею размещают центрирующие фонари. Сначала цем-ют нижнюю часть колонны. Для этого в колонну закачивают 1 порцию цр в объеме, необходимого для заполнения кп от башмака колонны до цементировочной муфты, затем продавочную жидкость. Для цементирования 1 ступени объём продавочной жидкости должен быть равен внутреннему объёму колонны. Закачав пж, сбрасывают в колонну шар. Под силой тяжести шар опускается вниз по колонне и садится на нижнюю втулку цементировочной муфты. Тогда вновь начинают закачивать пж в колонну: давление в ней над пробкой растёт, втулка смещается вниз до упора, а пж через открывшиеся отверстия выходит за колонну. Через эти отверстия скважину промывают, пока не затвердеет цементный раствор (от несколько часов до суток). После закачивают 2 порцию цр, освобождая верхнюю пробку и вытесняют раствор 2 порцией пж. Пробка, достигнув втулки, укрепляется с помощью штифтов в корпусе цементировочной муфты, сдвигает её вниз; при этом втулка закрывает отверстия муфты и разобщает полость колонны от кп. После затвердения пробку разбуривают. Место установки муфты выбирают в зависимости от причин, побудивших прибегнуть к ступ цементированию. В газовых скважинах цементировочная муфта устанавливается на 200-250м выше кровли продуктивного горизонта. Если при цементировании скважины существует опасность поглощения, место установки муфты рассчитывают так, чтобы сумма гидродинамиеских давлений и статическое давление столба растворов в заколонном пространстве была меньше давления разрыва слабого пласта. Всегда цементировочную муфту следует размещать против устойчивых не проницаемых пород и центрировать фонарями. Применяют:а) если при одноступенчатом цементировании неизбежно поглощение раствора; б) если вскрыт пласт с АВД и в период схватывания р-ра после одноступенатого цементирования могут возникнуть перетоки и газопроявления; в) если для одноступенчатого цементирования требуется одновременное участие в операции большого числа цементных насосов и смесительных машин. Недостатки: большой разрыв во времени между окончанием цементирования нижнего участка и началом цементирования верхнего. Этот недостаток можно в основном устранить, установив на ок, ниже цементировоной муфты, наружный пакер. Если по окончании цементирования нижней ступени заколонное пространство скважины герметизировать пакером, то можно сразу же приступить к цементировке верхнего участка.

    Принципы расчета обсадной колонны на прочность при осевом растяжении для вертикальных скважин. Специфика расчета колонн для наклонных и искривленных скважин.

Расчет обсадной колонны начинают с определения избыточных наружных давлений. [1 ]

Расчет обсадных колонн проводят при проектировании с целью выбора толщин стенок и групп прочности материала обсадных труб, а так же для проверки соответствия заложенных при проектировании нормативных коэффициентов запаса прочности ожидаемым с учетом сложившихся геологических, технологических, конъюнктурных условий производства. [2 ]

Расчет обсадных колонн с трапецеидальной резьбой на растяжение проводят, исходя из допустимой нагрузки. При спуске обсадных колонн секциями за длину колонны принимают длину секции. [3 ]

Расчет обсадной колонны включает определение факторов, влияющих на повреждение обсадных труб, и выбор наиболее приемлемых марок стали для каждой определенной операции с точки зрения надежности и экономичности. Конструкция обсадной колонны должна отвечать требованиям, предъявляемым к колонне при заканчивании и эксплуатации скважины. [4 ]

Расчет обсадных колонн для наклонно-направленных скважин отличается от принятого для вертикальных скважин выбором запаса прочности на растяжение в зависимости от интенсивности искривления ствола скважины, а также определением наружных и внутренних давлений, в котором положение характерных для наклонной скважины точек определяется по ее вертикальной проекции.

Расчет обсадных колонн производят по максимальным значениям избыточных наружных и внутренних давлений, а также осевых нагрузок (при бурении, опробовании, эксплуатации, ремонте скважин), при этом учитывают раздельное и совместное их действие.

Основное отличие расчета обсадных колонн для наклонно направленных скважин от расчета для вертикальных скважин заключается в определении запаса прочности на растяжение, который производится в зависимости от интенсивности искривления ствола скважины, а также расчета наружных и внутренних давлений с учетом удлинения ствола скважины

Выбор обсадных труб и расчет обсадных колонн на прочность проводятся с учетом максимальных ожидаемых избыточных наружных и внутренних давлений при полном замещении раствора пластовым флюидом, а также осевых нагрузок на трубы и агрессивности флюида на стадиях строительства и эксплуатации скважины на основании действующих конструкций.

Основными нагрузками при расчете колонны на прочность являются осевые растягивающие нагрузки от собственного веса, а также наружное и внутреннее избыточное давления при цементировании и эксплуатации скважины. Кроме того, на колонну действуют и другие нагрузки:

· осевые динамические нагрузки в период неустановившегося движения колонны;

· осевые нагрузки от сил трения колонны о стенки скважины в процессе ее спуска;

· сжимающие нагрузки от части собственного веса при разгрузке колонны на забой;

· изгибающие нагрузки, возникающие в искривленных скважинах.

Расчет эксплуатационной колонны для нефтяной скважины

Условные обозначения, принятые в формулах:

Расстояние от устья скважины до башмака колонны, м L

Расстояние от устья скважины до тампонажного раствора, м h

Расстояние от устья скважины до уровня жидкости в колонне, м Н

Плотность опрессовочной жидкости, г/см 3 r ОЖ

Плотность бурового раствора за колонной, г/см 3 r БР

Плотность жидкости в колонне r В

Плотность тампонажного цементного раствора за колонной r ЦР

Давление избыточное внутреннее на глубине z, МПа Р ВИz

Давление избыточное наружное на глубине z Р НИz

Давление избыточное критическое наружное, при котором напряжение

Давление в теле трубы достигает предела текучести Р КР

Давление пластовое на глубине z Р ПЛ

Давление опрессовки

Общий вес колонны подобранных секций, Н (МН) Q

Коэффициент разгрузки цементного кольца k

Коэффициент запаса прочности при расчете на наружное избыточное давление n КР

Коэффициент запаса прочности при расчете на растяжение n СТР

Рисунок 69. Схема цементирования скважины

При h > Н Определяем избыточные наружные давления (на стадии окончания эксплуатации) для следующих характерных точек.

1: z = 0; Р н.иz = 0,01ρ б.р * z; (86)

2: z = H; Р н.и z = 0,01ρ б. р * H, (МПа); (87)

3: z = h; Р н.и z ={0,01 [ρ б.p h - ρ в (h - Н)]}, (МПа); (88)

4: z = L; Р н.и z = {0,01 [(ρ ц.р - ρ в) L - (ρ ц. р - ρ б. р) h + ρ в H)] (1 - k), (МПа). (89)

Строим эпюру ABCD (рисунок 70). Для этого в горизон­тальном направлении в приня­том масштабе откладываем зна­ченияρ н.и z в точках1 -4 (см. схему) и эти точки после­довательно соединяем между собой прямолинейными отрез­ками

Рисунок 70. Эпюры наружных и внутренних

избыточных давлений

Определяем избыточные вну­тренние давления из условия испытания обсадной колонны на герметичность в один прием без пакера.

Давление на устье: Р у = Р пл - 0,01ρ в L (МПа). (90)

    Основные факторы, влияющие на качество цементирования скважин и характер их влияния.

Качество разобщения проницаемых пластов путем цементирования зависит от следующих групп факторов: а) состава тампонирующей смеси; б) состава и свойств тампонажного раствора; в) способа цементирования; г) полноты замещения продавочной жидкости тампонажным раствором в заколонном пространстве скважины; д) прочности и герметичности сцепления тампонажного камня с обсадной колонной и стенками скважины; е) использования дополнительных средств для предотвращения возникновения фильтрации и образования суффозионных каналов в тампонажном растворе в период загустевания и схватывания; ж) режима покоя скважины в период загустевания и схватывания тампонажного раствора.

    Принципы расчета необходимых количеств тампонажных материалов, смесительных машин и цементировочных агрегатов для приготовления и закачки тампонажного раствора в обсадную колонну. Схема обвязки цементировочной техники.

Необходимо произвести расчет цементирования для следующих условий:

- коэффициент резерва на высоте подъема цементного раствора, вводимый для компенсации факторов, которые не поддаются учету (определяют статистическим путем по данным цементирования предыдущих скважин); и- соответственно средний диаметр скважины и наружный диаметр эксплуатационной колонны, м;- длина участка цементирования, м;- средний внутренний диаметр эксплуатационной колонны, м;- высота (длина) цементного стакана, оставляемого в колонне, м.;- коэффициент запаса продавочной жидкости, учитывающий ее сжимаемость,- =1,03;- - коэффициент, учитывающий потери цемента при погрузочно-разгрузочных работах и приготовлении раствора;- - - плотность цементного раствора, кг/ м3;– плотность бурового раствора, кг/ м3; n- относительное водосодержание;- плотность воды, кг/ м3;- насыпная плотность цемента, кг/ м3;

Объем тампонажного раствора, необходимого для цементирования заданного интервала скважины (м3): Vц.p.=0,785*kp*[(2-dн2)*lц+d02*hс]

Объем продавочной жидкости: Vпр=0,785* - *d2*(Lc-);

Объем буферной жидкости: Vб=0,785*(2-dн2)*lб;

Масса тампонажного портландцемента: Мц= - **Vцр/(1+n);

Объем воды для приготовления тампонажного раствора, м3: Vв= Мц*n/(kц*pв);

Сухой тампонажный материал до начала цементирования загружают в бункеры смесительных машин, необходимое число которых: nс= Мц/Vсм, где Vсм - объем бункера смесительной машины.

    Способы оборудования нижнего участка скважины в зоне продуктивного пласта. Условия, при которых возможно применение каждого из этих способов.

1. Продуктивную залежь пробуривают, не перекрывая предварительно вышележащие породы специальной колонной обсадных труб, затем спускают до забоя обсадную колонну и цементируют. Для сообщения внутренней полости обсадной колонны с продуктивной залежью ее перфорируют, т.е. в колонне простреливают большое число отверстий. Метод имеет следующие достоинства: прост в реализации; позволяет селективно сообщать скважину с любым пропластком продуктивной залежи; стоимость собственно буровых работ может быть меньше, чем при других методах вхождения.

2. Предварительно до кровли продуктивной залежи спускают и цементируют обсадную колонну, изолируя вышележащие породы. Затем продуктивную залежь пробуривают долотами меньшего диаметра и оставляют ствол скважины ниже башмака обсадной колонны открытым. Метод применим только в случае, если продуктивная залежь сложена устойчивыми породами и насыщена только одной жидкостью; он не позволяет селективно эксплуатировать какой-либо пропласток.

3. Отличается от предыдущего тем, что ствол скважины в продуктивной залежи перекрывают фильтром, который подвешивают в обсадной колонне; пространство между фильтром и колонной часто изолируют пакером. Метод имеет те же достоинства и ограничения, что и предыдущий. В отличие от предыдущего, его можно принять в тех случаях, когда продуктивная залежь сложена породами, недостаточно устойчивыми при эксплуатации.

4. Скважину обсаживают колонной труб до кровли продуктивной залежи, затем разбуривают последнюю и перекрывают хвостовиком. Хвостовик цементируют по всей длине, а затем перфорируют против заданного интервала. При таком методе можно избежать существенного загрязнения коллектора, выбирая промывочную жидкость только с учетом ситуации в самой залежи. Он допускает селективную эксплуатацию различных пропластков и позволяет быстро и с минимальными затратами средств осваивать скважину.

5. Отличается от первого метода лишь тем, что в скважину после разбуривания продуктивной залежи спускают обсадную колонну, нижний участок которой заранее составлен из труб с щелевыми отверстиями, и тем, что цементируют лишь выше кровли продуктивной залежи. Перфорированный участок колонны размещают против продуктивной залежи. При этом методе обеспечить селективную эксплуатацию того или иного пропластка нельзя.

    Факторы, учитываемые при выборе тампонажного материала для цементирования конкретного интервала скважины.

Выбор тампонажных материалов для цементирования обсадных колонн обусловливается литофациальной характеристикой разреза, и основными факторами, определяющими состав тампонажного раствора, являются температура, пластовое давление, давление гидроразрыва, наличие солевых отложений, вид флюида и др. В общем случае тампонажный раствор состоит из тампонажного цемента, среды затворения, реагентов- ускорителей и замедлителей сроков схватывания, реагентов- понизителей показателя фильтрации и специальных добавок. Тампонажный цемент выбирают следующим образом: по температурному интервалу, по интервалу измерения плотности тампонажного раствора, по видам флюида и отложениям в интервале цементирования уточняют марку цементов. Среду затворения выбирают в зависимости от наличия солевых отложений в разрезе скважины или степени минерализации пластовых вод. Для предотвращения преждевременного загустевания тампонажного раствора и обводнения продуктивных горизонтов необходимо снизить показатель фильтрации тампонажного раствора. В качестве понизителей этого показателя применяют НТФ, гипан, КМЦ, ПВС-ТР. Для повышения термостойкости химических добавок, структурирования дисперсионных систем и снятия побочных эффектов при использовании некоторых реагентов применяют глину, каустическую соду, хлористый кальций и хроматы.

    Выбор колонкового набора для получения качественного керна.

Керноприемный инструмент - инструмент, обеспечивающий прием, отрыв от массива г/п и сохранение керна в процессу бурения и во время транспортировки по скв. вплоть до извлечения его на пов-ть для исслед. Разновидности: - Р1 - для роторного бурения со сьемным(извлекаемым по БТ) керноприемником, - Р2 – несьемным керноприемником, - Т1 – для турбинного бурения со сьемным керноприемником, - Т2 – с несьемным керноприемником. Типы: - для отбора керна из массива плотных г/п (двойной колонковый снаряд с керноприемником, изолир. от протоков ПЖ и вращающийся вместе с корпусом снаряда), - для отбора керна в г/п трещиноватых, перемятых, или перемежающихся по плотности и твердости (невращ. керноприемн., подвешенный на одном или нескольк. подшипниках и надежными керноотрывателями и кернодержателями), - для отбора керна в сыпучих г/п, легко разр. и размыв. ПЖ (должно обеспечивать полную герметизацию керна и перекрытие керноприемного отверстия в конце бурения)

    Конструктивные особенности и области применения бурильных труб.

Трубы бурильные ведущие служат для передачи вращения от ротора к бурильной колонне. Бурильные трубы обычно имеют квадратное или шестигранное сечение. Они выполняются в двух вариантах: сборными и цельными. Трубы бурильные с высаженными концами бывают с высаженными наружу и внутрь. Бурильные трубы с приваренными соединительными концами изготавливают двух типов: ТБПВ – с приваренными соединительными концами по высаженной наружу части и ТБП – с приваренными соединительными концами по не высаженной наружу части.Бурильные трубы с блокирующими поясками ТББ отличаются от стандартных труб с высаженными внутрь концами наличием блокирующих поясков на концах трубы, цилиндрической резьбы с шагом 4 мм, упорного соединения трубы с замком, тугого сопряжения с замком. Бурильные трубы со стабилизирующими поясками отличаются от стандартных труб наличием гладких участков трубы непосредственно за навинченными ниппелем и муфтой замка и стабилизирующих уплотнительных поясков на замках, конической (1:32) трапецеидальной резьбы с шагом 5,08 мм с сопряжением по внутреннему диаметру……….

    Принципы расчета бурильной колонны при бурении забойным двигателем .

Расчет БК при бурении ЗД прямолинейно-наклонного участка наклонно-направленной скв

Qпрод=Qcosα; Qнорм=Qsinα; Fтр=μQн=μQsinα;(μ~0.3);

Pпрод=Qпрод+Fтр=Q(sinα+μsinα)

LI>=Lзд+Lубт+Lнк+lI1+…+l1n Если нет, то lIny=LI-(Lзд+Lубт+Lнк+lI1+…+l1(n-1))

Расчет БК при бурении ЗД искривленного участка наклонно-направленной скв.

II

Pи=FIIтр+QIIпроек QIIпроек=|goR(sinαк-sinαн)|

Pи=μ|±2goR2(sinαк-sinαн)-goR2sinαкΔα±PнΔα|+|goR2(sinαк-sinαн)|

Δα=-- Если>, тоcos “+”

“-Pн“ – при наборе кривизны “+Pн” – при сбросе кривизны

считается, что на участке БК состоит из одной секции =πα/180=0.1745α

    Принципы расчета бурильной колонны при бурении роторным способом.

Статический расчет, когда не учитываются знакопеременные циклические напряжения, а учитываются постоянные напряжения изгиба и кручения

На достаточную прочность или выносливость

Статический расчет для вертикальных скв:

;

Kз=1,4 – при норм. усл. Kз=1,45 – при осложн. усл.

для наклонных участков

;

;

    Режим бурения. Методика его оптимизации

Режим бурения - сочетание таких параметров, которые существенно влияют на показатели работы долота и которые буровик может изменить со своего пульта.

Pд [кН] – нагрузка на долото, n [об/мин] – частота вращения долота, Q [л/с] – расход(подача) пром. ж-ти, H [м] – проходка на долото, Vм [м/час] – мех. скорость проходки, Vср=H/tБ – средняя, Vм(t)=dh/dtБ – мгновенная, Vр [м/час] – рейсовая скорость бурения, Vр=H/(tБ + tСПО + tВ), C [руб/м] – эксплуатационные затраты на 1м проходки, C=(Cд+Сч(tБ + tСПО + tВ))/H, Cд – сибестоимость долота; Cч – стоимость 1часа работы бур. обор. Оптимизация режима бурения: maxVp – развед. скв., minC – экспл. скв..

(Pд, n, Q)опт=minC, maxVр

C=f1(Pд, n, Q) ; Vp=f2(Pд, n, Q)

Этапы поиска оптимального режима - на стадии проектирования - оперативная оптимизация режима бурения - корректировка проектного режима с учетом инф., полученной в процессе бурения

В процессе проектирования мы используем инф. полученную при бурении скв. в данном регионе, в аналог. усл., данные по гоелог. разрезу скв., рекомендаций завода-изготовителя бур. инстр., рабочих хар-к забойных двигателей.

2 способа выбора tопт долота на забое:

- графический tgα=dh/dt=Vм(t)=h(t)/(tопт+tсп+tв) - аналитический

    Классификация методов возбуждения притока при освоении скважин.

Под освоением подразумевают комплекс работ по вызову притока жидкости из продуктивного пласта, очистке приствольной зоны от загрязнения и обеспечению условий для получения возможно более высокой продуктивности скважины.

Чтобы получить приток из продуктивного горизонта, необходимо давление в скважине снизить значительно ниже пластового. Существуют разные способы снижения давления, основанные либо на замене тяжелой промывочной жидкости на более легкую, либо на плавном или резком понижении уровня жидкости в эксплуатационной колонне. Для вызова притока из пласта, сложенного слабоустойчивыми породами, применяют способы плавного уменьшения давления или с небольшой амплитудой колебания давлений, чтобы не допустить разрушения коллектора. Если же продуктивный пласт сложен весьма прочной породой, то часто наибольший эффект получают при резком создании больших депрессий. При выборе способа вызова притока, величины и характера создания депрессии необходимо учитывать устойчивость и структуру породы коллектора, состав и свойства насыщающих его жидкостей, степень загрязнения при вскрытии, наличие близрасположенных сверху и снизу проницаемых горизонтов, прочность обсадной колонны и состояние крепи скважины. При очень резком создании большой депрессии возможно нарушение прочности и герметичности крепи, а при кратковременном, но сильном увеличении давления в скважине - поглощение жидкости в продуктивный пласт.

Замена тяжелой жидкости на более легкую. Колонну НКТ спускают почти до забоя, если продуктивный пласт сложен хорошо устойчивой породой, или примерно до верхних отверстий перфорации, если порода недостаточно устойчива. Замену жидкости обычно ведут способом обратной циркуляции: передвижным поршневым насосом в межтрубное пространство закачивают жидкость, плотность которой меньше плотности промывочной жидкости в эксплуатационной колонне. По мере того, как более легкая жидкость заполняет межтрубное пространство и вытесняет более тяжелую жидкость в НКТ, давление в насосе возрастает. Оно достигает максимума в тот момент, когда легкая жидкость подходит к башмаку НКТ. p умт =(р пр -р ож)qz нкт +p нкт +p мт, где p пр и p ож -плотности тяжелой и облегченной жидкостей, кг/м; z нкт -глубина спуска колонны НКТ, м; p нкт и p мт -гидравлические потери в колонне НКТ и в межтрубном пространстве, Па. Это давление не должно превышать давления опрессовки эксплуатационной колонны p умт < p оп.

Если же порода слабоустойчива, величину снижения плотности за один цикл циркуляции уменьшают еще более, порою до p -p = 150-200 кг/м3. При планировании работ по вызову притока следует учитывать это и заблаговременно готовить емкости с запасом жидкостей соответствующих плотностей, а также оборудование для регулирования плотности.

При закачивании более легкой жидкости следят за состоянием скважины по показаниям манометров и по соотношению расходов закачиваемой в межтрубное пространство и вытекающей из НКТ жидкостей. Если расход выходящей жидкости увеличивается, это признак начавшегося притока из пласта. В случае быстрого увеличения расхода на выходе из НКТ и падения давления в межтрубном пространстве выходящий поток направляют через линию со штуцером.

Если замены тяжелой промывочной жидкости на чистую воду или дегазированную нефть недостаточно для получения устойчивого притока из пласта, прибегают к другим способам увеличения депрессии или стимулирующего воздействия.

Когда коллектор сложен слабоустойчивой породой, дальнейшее снижение давления возможно заменой воды или нефти газожидкостной смесью. Для этого к межтрубному пространству скважины подсоединяют поршневой насос и передвижной компрессор. После промывки скважины до чистой воды регулируют подачу насоса так, чтобы давление в нем было значительно ниже допустимого для компрессора, а скорость нисходящего потока была на уровне примерно 0,8-1 м/с, и включают компрессор. Поток воздуха, нагнетаемого компрессором, смешивается в аэраторе с потоком воды, подаваемой насосом, и в межтрубное пространство поступает газожидкостная смесь; давления в компрессоре и насосе при этом начнут возрастать и достигнуть максимума в момент, когда смесь подойдет к башмаку НКТ. По мере продвижения газожидкостной смеси по колонне НКТ и вытеснения негазированной воды давления в компрессоре и насосе будут снижаться. Степень аэрации и уменьшения статического давления в скважине увеличивают небольшими ступенями после завершения одного-двух циклов циркуляции так, чтобы давление в межтрубном пространстве у устья не превышало допустимого для компрессора.

Существенный недостаток этого способа - необходимость поддержания достаточно больших расходов воздуха и воды. Значительно сократить расход воздуха и воды и обеспечить эффективное уменьшение давления в скважине можно при использовании вместо водо-воздушной смеси двухфазной пены. Такие пены готовят на основе минерализованной воды, воздуха и подходящего пенообразующего ПАВ.

Снижение давления в скважине с помощью компрессора. Для вызова притока из пластов, сложенных прочными, устойчивыми породами широко применяют компрессорный способ снижения уровня жидкости в скважине. Сущность одной из разновидностей этого способа такова. Передвижным компрессором нагнетают воздух в межтрубное пространство с таким расчетом, чтобы возможно глубже оттеснить уровень жидкости в нем, аэрировать жидкость в НКТ и создать депрессию, необходимую получения притока из продуктивного пласта. Если статический уровень жидкости в скважине перед началом операции находится у устья, глубину, до которой можно оттеснить уровень в межтрубном пространстве при нагнетании воздуха.

Если z сн > z нкт, то нагнетаемый компрессором воздух прорвется в НКТ и начнет аэрировать жидкость в них, как только уровень в межтрубном пространстве опустится до башмака НКТ.

Если же z сн > z нкт, то предварительно при спуске НКТ в скважин в них устанавливают специальные пусковые клапаны. Верхний пусковой клапан устанавливают на глубине z" пуск = z" сн - 20м. При нагнетании воздуха компрессором пусковой клапан откроется в тот момент, когда давления в НКТ и в межтрубном пространстве на глубине его установки сравняются; при этом воздух начнет выходить через клапан в НКТ и аэрировать жидкость, а давления в межтрубном пространстве и в НКТ будут снижаться. Если после снижения давления в скважине приток из пласта не начнется и практически вся жидкость из НКТ выше клапана будет вытеснена воздухом, клапан закроется, давление в межтрубном пространстве вновь будет возрастать, а уровень жидкости опускаться до следующего клапана. Глубину z"" установки следующего клапана можно найти из уравнения если положить в нем z =z"" + 20 и z ст = z" сн.

Если перед началом операции статический уровень жидкости в скважине расположен значительно ниже устья, то при нагнетании воздуха в межтрубное пространство и оттеснении уровня жидкости до глубины z сн давление на продуктивный пласт возрастает, что может вызвать поглощение части жидкости в него. Предотвратить поглощение жидкости в пласт можно, если на нижнем конце колонны НКТ установить пакер, а внутри НКТ - специальный клапан и с помощью этих устройств отделить зону продуктивного пласта от остальной части скважины. В этом случае при нагнетании воздуха в межтрубное пространство давление на пласт будет оставаться неизмененным до тех пор пока давление в колонне НКТ над клапаном не понизится ниже пластового. Как только депрессия окажется достаточной для притока пластовой жидкости, клапан приподнимется и пластовая жидкость начнет подниматься по НКТ.

После получения притока нефти или газа скважина должна в течение некоторого времени поработать с возможно большим дебитом, чтобы из приствольной зоны можно было удалить проникшую туда промывочную жидкость и ее фильтрат, а также другие илистые частицы; дебит при этом регулируют так, чтобы не началось разрушение коллектора. Периодически отбирают пробы вытекающей из скважины жидкости с целью изучения состава и свойств ее и контроля за содержанием в ней твердых частиц. По уменьшению содержания твердых частиц судят о ходе очистки приствольной зоны от загрязнения.

Если, несмотря на создание большой депрессии, дебит скважины оказывается низким, то обычно прибегают к различным способам стимулирующего воздействия на пласт.

    Классификация методов интенсификации притока в процессе освоения скважины.

Исходя из анализа управляемых факторов, можно построить классификацию методов искусственного воздействия как на пласт в целом, так и на призабойную зону каждой конкретной скважины. По принципу действия все методы искусственного воздействия делятся на следующие группы:

1. Гидрогазодинамические.

2. Физико-химические.

3. Термические.

4. Комбинированные.

Среди методов искусственного воздействия на пласт наибольшее распространение получили гидрогазодинамические методы, связанные с управлением величиной пластового давления путем закачки в залежь различных флюидов. Сегодня более 90% добываемой в России нефти связано с методами регулирования пластового давления путем закачки в залежь воды, называемыми методами поддержания пластового давления (ППД) заводнением. На ряде месторождений ППД осуществляется закачкой газа.

Анализ разработки месторождений показывает, что если пластовое давление невысоко, контур питания достаточно удален от скважин или режим дренирования не является активным, темпы извлечения нефти могут оказаться достаточно низкими; низким оказывается и коэффициент нефтеотдачи. Во всех этих случаях использование той или иной системы ППД является необходимым.

Таким образом, основные проблемы управления процессом выработки запасов путем искусственного воздействия на пласт связаны с изучением заводнения.

Существенно более широким спектром возможностей обладают методы искусственного воздействия на призабойные зоны скважины. Воздействие на ПЗС осуществляется уже на стадии первичного вскрытия продуктивного горизонта в процессе строительства скважины, которое, как правило, приводит к ухудшению свойств призабойной зоны. Наибольшее распространение получили методы воздействия на призабойную зону в процессе эксплуатации скважин, которые, в свою очередь, делятся на методы интенсификации притока или приемистости и на методы ограничения или изоляции притока воды (ремонтно-изоляционные работы - РИР).

Классификация методов воздействия на ПЗС с целью интенсификации притока или приемистости представлена в табл. 1 , а для ограничения или изоляции водопритоков - в табл. 2 . Совершенно очевидно, что приведенные таблицы, являясь достаточно полными, содержат только наиболее апробированные на практике методы искусственного воздействия на ПЗС. Они не исключают, а наоборот, предполагают необходимость дополнений как по методам воздействия, так и по используемым материалам.

Прежде чем перейти к рассмотрению методов управления процессом выработки запасов, отметим, что объектом изучения является сложная система, состоящая из залежи (нефтенасыщенная зона и область питания) со своими коллекторскими свойствами и насыщающими флюидами и определенного количество скважин, системно размещенных на залежи. Эта система является единой в гидродинамическом отношении, откуда следует, что любое изменение в каком-либо ее элементе автоматически приводит к соответствующему изменению в работе всей системы, т.е. данная система авторегулируема.

    Опишите технические средства для получения оперативной информации в процессе бурения.

Информационное обеспечение процесса бурения нефтяных и газовых скважин является наиболее важным звеном в процессе строительства скважин, особенно при введении в разработку и освоении новых нефтегазовых месторождений.

Требования к информационному обеспечению строительства нефтегазовых скважин в данной ситуации заключаются в переводе информационных технологий в разряд информационно-обеспечивающих и информационно-воздействующих, при которых информационное сопровождение наряду с получением необходимого объема информации давало бы дополнительный экономический, технологический, или иной эффект . К данным технологиям следует отнести следующие комплексные работы:

    контроль наземных технологических параметров и выбор наиболее оптимальных режимов бурения (например, выбор оптимальных нагрузок на долото, обеспечивающих высокую скорость проходки);

    забойные измерения и каротаж в процессе бурения (MWD и LWD-системы);

    измерения и сбор информации, сопровождаемые одновременным управлением технологическим процессом бурения (управление траекторией горизонтальной скважины с помощью управляемых забойных ориентаторов по данным забойных телеизмерительных систем).

В информационном обеспечении процесса строительства скважин особенно важную роль играют геолого-технологические исследования (ГТИ) . Основной задачей службы ГТИ являются изучение геологического строения разреза скважин, выявление и оценка продуктивных пластов и повышение качества строительства скважин на основе получаемой в процессе бурения геолого-геохимической, геофизической и технологической информации. Оперативная информация, получаемая службой ГТИ, имеет большое значение при бурении разведочных скважин в малоизученных регионах со сложными горно-геологическими условиями, а также при проводке наклонно направленных и горизонтальных скважин.

Однако в связи с новыми требованиями к информационному обеспечению процесса бурения задачи, решаемые службой ГТИ, могут быть значительно расширены. Высококвалифицированный операторский состав партии ГТИ, работающий на буровой, на протяжении всего цикла строительства скважины при наличии соответствующих аппаратурно-методических средств и программного обеспечения в состоянии решить практически полный комплекс задач информационного сопровождения процесса бурения:

    геолого-геохимические и технологические исследования;

    обслуживание и работа с телеизмерительными системами (MWD и LWD-системы);

    обслуживание автономных систем измерения и каротажа, спускаемых на трубах;

    контроль параметров бурового раствора;

    контроль качества крепления скважины;

    исследования пластового флюида при опробовании и испытании скважин;

    каротаж на кабеле;

    супервайзинговые услуги и т. д.

В ряде случаев совмещение этих работ в партиях ГТИ является экономически более выгодным и позволяет экономить на непроизводительных затратах по содержанию специализированных, узконаправленных геофизических партий, минимизировать транспортные расходы.

Однако технических и программно–методических средств, позволяющих объединить перечисленные работы в единую технологическую цепочку в станции ГТИ, в настоящее время нет.

Поэтому возникла необходимость разработки более совершенной станции ГТИ нового поколения, которая позволит расширить функциональные возможности станции ГТИ. Рассмотрим основные направления работ при этом.

Основные требования к современной станции ГТИ - это надежность, многофункциональность, модульность и информативность.

Структура станции приведена на рис. 1. Она построена на принципе распределенных удаленных систем сбора, которые объединены между собой с использованием стандартного последовательного интерфейса. Основными низовыми системами сбора являются концентраторы, предназначенные для развязки последовательного интерфейса и подключения через них отдельных составных частей станции: модуля газового каротажа, модуля геологических приборов, цифровых или аналоговых датчиков, информационных табло. Через такие же концентраторы к системе сбора (на регистрирующий компьютер оператора) подключаются и другие автономные модули и системы - модуль контроля качества крепления скважин (блок манифольда), наземные модули забойных телеизмерительных систем, систем регистрации геофизических данных типа «Гектор» или «Вулкан» и т.д.

Рис. 1. Упрощенная структурная схема станции ГТИ

Концентраторы одновременно должны обеспечивать гальваническую развязку цепей связи и питания. В зависимости от возложенных на станцию ГТИ задач количество концентраторов может быть разным - от нескольких единиц до нескольких десятков штук. Программное обеспечение станции ГТИ обеспечивает полную совместимость и слаженную работу в единой программной среде всех технических средств.

Датчики технологических параметров

Датчики технологических параметров, используемые в станциях ГТИ, являются одной из самых важных составных частей станции. От точности показаний и надежности работы датчиков во многом зависит эффективность службы ГТИ при решении задач по контролю и оперативному управлению процессом бурения. Однако из-за тяжелых условий эксплуатации (широкий диапазон температур от –50 до +50 ºС, агрессивная среда, сильные вибрации и т.д.) датчики остаются самым слабым и ненадежным звеном в составе технических средств ГТИ.

Применяемые в производственных партиях ГТИ датчики в большинстве своем были разработаны в начале 90-х годов с использованием отечественной элементной базы и первичных измерительных элементов отечественного производства. Причем из-за отсутствия выбора использовались общедоступные первичные преобразователи, которые не всегда отвечали жестким требованиям работы в условиях буровой. Этим и объясняется недостаточно высокая надежность применяемых датчиков.

Принципы измерения датчиков и их конструктивные решения выбраны применительно к отечественным буровым установкам старого образца, и поэтому на современные буровые установки и тем более на буровые установки иностранного производства их монтаж затруднителен.

Из вышесказанного следует, что разработка нового поколения датчиков чрезвычайно актуальна и своевременна.

При разработке датчиков ГТИ одним из требований является их адаптация ко всем существующим на российском рынке буровым установкам.

Наличие широкого выбора первичных преобразователей высокой точности и высокоинтегрированных малогабаритных микропроцессоров позволяет разработать высокоточные, программируемые датчики с большими функциональными возможностями. Датчики имеют однополярное напряжение питания и одновременно цифровой и аналоговый выходы. Калибровка и настройка датчиков производятся программно из компьютера со станции, предусмотрены возможность программной компенсации температурной погрешности и линеаризация характеристик датчиков. Цифровая часть электронной платы для всех типов датчиков однотипная и отличается только настройкой внутренней программы, что делает ее унифицированной и взаимозаменяемой при ремонтных работах. Внешний вид датчиков приведен на рис. 2.

Рис. 2. Датчики технологических параметров

Датчик нагрузки на крюке имеет ряд особенностей (рис. 3). Принцип действия датчика основан на измерении силы натяжения талевого каната на "мертвом" конце с применением тензометрического датчика усилий. Датчик имеет встроенный процессор и энергонезависимую память. Вся информация регистрируется и хранится в этой памяти. Объем памяти позволяет сохранить месячный объем информации. Датчик может комплектоваться автономным источником питания, который обеспечивает работу датчика при отключении внешнего источника питания.

Рис. 3. Датчик веса на крюке

Информационное табло бурильщика предназначено для отображения и визуализации информации, получаемой от датчиков. Внешний вид табло представлен на рис. 4.

На лицевой панели пульта бурильщика расположены шесть линейных шкал с дополнительной цифровой индикацией для отображения параметров: крутящий момент на роторе, давление ПЖ на входе, плотность ПЖ на входе, уровень ПЖ в емкости, расход ПЖ на входе, расход ПЖ на выходе. Параметры веса на крюке, нагрузки на долото по аналогии с ГИВ отображены на двух круговых шкалах с дополнительным дублированием в цифровом виде. В нижней части табло расположены одна линейная шкала для отображения скорости бурения, три цифровых индикатора для отображения параметров - глубина забоя, положение над забоем, газосодержание. Алфавитно-цифровой индикатор предназначен для вывода текстовых сообщений и предупреждений.

Рис. 4. Внешний вид информационного табло

Геохимический модуль

Геохимический модуль станции включает газовый хроматограф, анализатор суммарного газосодержания, газовоздушную линию и дегазатор бурового раствора.

Наиболее важной составной частью геохимического модуля является газовый хроматограф. Для безошибочного, четкого выделения продуктивных интервалов в процессе их вскрытия нужен очень надежный, точный, высокочувствительный прибор, позволяющий определять концентрацию и состав предельных углеводородных газов в диапазоне от 110 -5 до 100 %. Для этой цели для комплектации станции ГТИ разработан газовый хроматограф «Рубин» (рис. 5) (см. статью настоящего выпуска НТВ).

Рис. 5. Полевой хроматограф «Рубин»

Чувствительность геохимического модуля станции ГТИ может быть увеличена также путем увеличения коэффициента дегазации бурового раствора.

Для выделения забойного газа, растворенного в буровом растворе, используются дегазаторы двух типов (рис. 6):

      поплавковые дегазаторы пассивного действия;

      дегазаторы активные с принудительным дроблением потока.

Поплавковые дегазаторы просты и надежны в эксплуатации, однако обеспечивают коэффициент дегазации не более 1-2 %. Дегазаторы с принудительным дроблением потока могут обеспечить коэффициент дегазации до 80-90 %, но менее надежны и требуют постоянного контроля.

Рис. 6. Дегазаторы бурового раствора

а) поплавковый дегазатор пассивного действия; б) дегазатор активного действия

Непрерывный анализ суммарного газосодержания производится с помощью выносного датчика суммарного газа . Преимущество данного датчика перед традиционными анализаторами суммарного газа, размещаемыми в станции, заключается в оперативности получаемой информации, так как датчик размещается непосредственно на буровой и время задержки на транспортировку газа с буровой на станцию исключается. Кроме этого, для комплектации станций разработаны газовые датчики для измерения концентраций неуглеводородных компонентов анализируемой газовой смеси: водорода H 2 , окиси углерода CO, сероводорода Н 2 S (рис. 7).

Рис. 7. Датчики для измерения содержания газа

Геологический модуль

Геологический модуль станции обеспечивает исследование бурового шлама, керна и пластового флюида в процессе бурения скважины, регистрацию и обработку получаемых данных.

Исследования, выполняемые операторами станции ГТИ, позволяют решать следующие основные геологические задачи:

    литологическое расчленение разреза;

    выделение коллекторов;

    оценка характера насыщения коллекторов.

Для оперативного и качественного решения этих задач определен наиболее оптимальный перечень приборов и оборудования и исходя из этого разработан комплекс геологических приборов (рис. 8).

Рис. 8. Оборудование и приборы геологического модуля станции

Карбонатомер микропроцессорный КМ-1А предназначен для определения минерального состава горных пород в карбонатных разрезах по шламу и керну. Данный прибор позволяет определить процентное содержание кальцита, доломита и нерастворимого остатка в исследуемом образце пород. Прибор имеет встроенный микропроцессор, который рассчитывает процентное содержание кальцита и доломита, значения которых отображаются на цифровом табло или на экране монитора. Разработана модификация карбонатомера, позволяющая определить содержание в породе минерала сидерита (плотность 3,94 г/см 3), который оказывает влияние на плотность карбонатных пород и цемента терригенных пород, что может существенно снижать значения пористости.

Плотномер шлама ПШ-1 предназначен для экспресс-измерения плотности и оценки общей пористости горных пород по шламу и керну. Принцип измерения прибора ареометрический, основан на взвешивании исследуемого образца шлама в воздухе и в воде. С помощью плотномера ПШ–1 можно проводить измерения плотности горных пород с плотностью 1,1-3 г/см ³ .

Установка ПП-3 предназначена для выделения пород-коллекторов и исследования коллекторских свойств горных пород. Данный прибор позволяет определять объемную, минералогическую плотность и общую пористость. Принцип измерения прибора - термогравиметрический, основан на высокоточном измерении веса исследуемого образца породы, предварительно насыщенного водой, и непрерывном контроле за изменением веса данного образца по мере испарения влаги при нагревании. По времени испарения влаги можно судить о величине проницаемости исследуемой породы.

Установка дистилляции жидкости УДЖ-2 предназначена для оценки характера насыщения коллекторов горных пород по шламу и керну, фильтрационно-плотностных свойств, а также позволяет определять остаточную нефтеводонасыщенность по керну и буровому шламу непосредственно на буровой благодаря использованию нового подхода в системе охлаждения дистиллята. В установке применена система охлаждения конденсата на базе термоэлектрического элемента Пельтье вместо используемых водяных теплообменников в подобных аппаратах. Это позволяет уменьшить потери конденсата, обеспечив регулируемое охлаждение. Принцип работы установки основан на вытеснении пластовых флюидов из пор образцов горных пород за счет избыточного давления, возникающего при термостатированном регулируемом нагреве от 90 до 200 ºС ( 3 ºС), конденсации паров в теплообменнике и разделении конденсата, образовавшегося в процессе дистилляции, по плотности на нефть и воду.

Установка термодесорбции и пиролиза позволяет по малым навескам горных пород (шлам, кусочки керна) определить наличие свободных и сорбированных углеводородов, а также оценить наличие и степень преобразованности органического вещества, и на основе интерпретации получаемых данных выделить в разрезах скважин интервалы коллекторов, покрышек продуцирующих отложений, а также оценить характер насыщения коллекторов.

ИК–спектрометр предназначен для определения наличия и количественной оценки присутствующего углеводорода в исследуемой породе (газовый конденсат, легкая нефть, тяжелая нефть, битум и т.д.) с целью оценки характера насыщения коллекторов.

Люминоскоп ЛУ-1М с выносным УФ-осветителем и устройством для фотографирования предназначен для исследования бурового шлама и образцов керна под ультрафиолетовым освещением с целью определения наличия в породе битуминозных веществ, а также для их количественной оценки. Принцип измерения прибора основан на свойстве битумоидов при их облучении ультрафиолетовыми лучами излучать «холодное» свечение, интенсивность и цвет которого позволяют визуально определить наличие, качественный и количественный состав битумоида в исследуемой породе с целью оценки характера насыщения коллекторов. Устройство для фотографирования вытяжек предназначено для документирования результатов люминесцентного анализа и способствует исключению субъективного фактора при оценке результатов анализа. Выносной осветитель позволяет осуществлять предварительный осмотр крупногабаритного керна на буровой с целью выявления наличия битумоидов.

Осушитель шлама ОШ-1 предназначен для экспресс-осушки проб шлама под воздействием теплового потока. Осушитель имеет встроенный регулируемый таймер и несколько режимов регулировки интенсивности и температуры воздушного потока.

Технические и информационные возможности описанной станции ГТИ отвечают современным требованиям и позволяют реализовать новые технологии информационного обеспечения строительства нефтегазовых скважин.

    Горно-геологические характеристики разреза, влияющие на возникновение, предупреждение и ликвидацию осложнений.

Осложнения в процессе бурения возникают по следующим причинам: сложные горно-геологические условия; плохая информированность о них; низкая скорость бурения, например, из-за длительных простоев, плохих технологических решений, заложенных в техническом проекте на строительство скважины.

При осложненном бурении чаще возникают аварии.

Горно-геологические характеристики необходимо знать, чтобы правильно составлять проект на строительство скважины, предупреждать и бороться с осложнениями в ходе реализации проекта.

Пластовое давление (Рпл)- давления флюида в породах с открытой пористостью. Так называются породы, в которых пустоты сообщаются между собой. При этом пластовый флюид может течь по законам гидромеханики. К таким породам относятся тампонажные породы, песчаники, коллекторы продуктивных горизонтов.

Поровое давление (Рпор)–давление в закрытых пустотах, тоесть давление флюида в поровом пространстве, в котором поры не сообщаются друг с другом. Такими свойствами обладают глины, соляные породы, покрышки коллекторов.

Горное давление (Рг) – гидростатическое (геостатическое) давление на рассматриваемой глубине от вышерасположенной толщи ГП.

Статический уровень пластовой жидкости в скважине, определяемый равенством давления этого столба с пластовым давлением. Уровень может быть ниже поверхности земли (скважина будет поглощать), совпадать с поверхностью (имеется равновесие) или быть выше поверхности (скважина фонтанирует) Рпл=rgz.

Динамический уровень жидкости в скважине – установлен выше статического уровня при доливе в скважину и ниже него – при отборе жидкости, например при откачке погружным насосом.

Депрессия P=Pскв-Рпл<0 – давление в скважине меньше пластового. Наличие депрессии – необходимое условие для притока пластового флюида.

Репрессия Р=Рскв-Рпл>0 – давление в скважине не больше пластового. Имеет место поглощение.

Коэффициент аномальности пластового давления Ка=Рпл/rвgzпл (1), где zпл –глубина кровли рассматриваемого пласта, rв – плотность воды, g – ускорение свободного падения. Ка<1=>АНПД; Ка>1=>АВПД.

Давление поглощения или гидроразрыва Рп – давление, при котором возникают поглощения всех фаз промывочной или тампонажной жидкости. Величину Рп определяют опытным путем по данным наблюдений в процессе бурения, либо с помощью специальных исследований в скважине. Полученные данные используются при проводке других подобных скважин.

    Совмещенный график давлений при осложнении. Выбор первого варианта конструкции скважин.

Совмещенный график давлений. Выбор первого варианта конструкции скважин.

Чтобы правильно составить технический проект на строительство скважин необходимо точно знать распределение пластовых (поровых) давлений и давлений поглощения (гидроразрыва) по глубине или, что то же самое, распределение Ка и Кп (в безразмерном виде). Распределение Ка и Кп представляют на совмещенном графике давлений.

Распределение Ка и Кп по глубине z.

· Конструкция скважины (1-ый вариант), которая потом уточняется.

Из этого графика видно, что мы имеем три интервала глубин с совместимыми условиями бурения, то есть такими, в которых можно применять жидкость с одинаковой плотностью.

Особенно тяжело бурить, когда Ка=Кп. Сверхсложным бурение становится при величине Ка=Кп<1. В этих случаях обычно бурят на поглощение или применяют промывку аэрированной жидкостью.

После вскрытия поглощающего интервала производят изоляционные работы, благодаря которым повышается Кп (искусственно), получая возможность провести, например, цементирование колонны.

    Схема циркуляционной системы скважин

Схема циркуляционной системы скважин и эпюра распределения давлений в ней.

Схема: 1. Долото, 2. Забойный двигатель, 3. УБТ, 4. БТ, 5. Замковое соединение, 6. Квадрат, 7. Вертлюг, 8. Буровой рукав, 9. Стояк, 10. Напорный трубопровод (манифольд), 11. Насос, 12. Всасывающий патрубок, 13. Желобная система, 14. Вибросито.

1.Линия гидростатического распределения давления.

2.Линия гидравлического распределения давления в КП.

3.Линия гидравлического распределения давления в БТ.

Давление промывочной жидкости на пласт должно быть всегда внутри заштрихованной области между Рпл и Рп.

Через каждое резьбовое соединение БК жидкость пытается протечь из трубного в затрубное пространство (при циркуляции). Эта тенденция вызвана перепадом давления в трубах и КП. При просачивании происходит разрушение резьбового соединения. При прочих равных условиях органическим недостатком бурения с гидравлическим забойным двигателем, является повышенный перепад давления на каждом резьбовом соединении, так как в забойном двигателе

Циркуляционная система служит для подачи бурового раствора от устья скважины к приёмным емкостям, очистки от выбуренной породы и дегазации.

На рисунке представлена упрощённая схема циркуляционной системы ЦС100Э: 1 – трубопровод долива; 2 – растворопровод; 3 – блок очистки; 4 – приемный блок; 5 – шкаф управления электрооборудованием.

Упрощённая конструкция циркуляционной системы – это желобная система, которая состоит из желоба для движения раствора, настила около желоба для хождения и очистки желобов, перил и основания.

Желоба могут быть деревянными из досок 40 мм и металлическими из листового железа 3-4 мм. Ширина – 700-800 мм, высота – 400-500 мм. Применяют желоба прямоугольного профиля и полукруглые. С целью уменьшения скорости течения раствора и выпадения из него шлаба в желобах устанавливают перегородки и перепады высотой 15-18 см. На дне желоба в этих местах устанавливают люки с клапанами, через которые удаляют осевшую породу. Общая длина желобной системы зависит от параметров применяемых растворов, условий и технологии бурения, а также от механизмов, используемых для очистки и дегазации растворов. Длина, как правило, может быть в пределах 20-50 м.

При использовании комплектов механизмов очистки и дегазации раствора (вибросита, пескоотделители, илоотделители, дегазаторы, центрифуги) желобная система применяется только для подачи раствора от скважины к механизму и приёмным емкостям. В этом случае длина желобной системы зависит только от расположения механизмов и емкостей по отношению к скважине.

В большинстве случаев желобная система монтируется на металлических основаниях по секциям, имеющим длину 8-10 м и высоту до 1 м. Такие секции устанавливают на стальные телескопические стойки, регулирующие высоту установки желобов, это облегчает демонтаж желобной системы зимой. Так, при скоплении и замерзании под желобами выбуренной породы, желоба вместе с основаниями могут быть сняты со стоек. Монтируют желобную систему с уклоном в сторону движения раствора; с устьем скважины желобная система соединяется трубой или желобом меньшего сечения и с большим уклоном для увеличения скорости движения раствора и уменьшения в этом месте выпадения шлаба.

В современной технологии бурения скважин предъявляют особые требования к буровым растворам, согласно которым оборудование по очистке раствора должно обеспечивать качественную чистку раствора от твёрдой фазы, смешивать и охлождать его, а также удалять из раствора гз, поступивший в него из газонасыщенных пластов во время бурения. В связи с этими требованиями современные буровые установки комплектуются циркуляционными системами с определённым набором унифицированных механизмов – емкостей, устройств по очистке и приготовления буровых растворов.

Механизмы циркуляционных системы обеспечивают трёхступенчатую очистку бурового раствора. Из скважины раствор поступает на вибросито в первую ступень грубой очистки и собирается в отстойнике ёмкости, где осаждается грубодисперсный песок. Из отстойника раствор проходит в отсек циркуляционной системы и подаётся центробежным шламовым насосом в дегазатор при необходимости дегазации раствора, а затем – в пескоотделитель, где проходит вторую ступень очистки от породы размером до 0,074-0,08 мм. После этого раствор подаётся в илоотделитель – третью ступень очистки, где удаляются частицы породы до 0,03 мм. Песок и ил сбрасываются в ёмкость, откуда подаётся в центрифугу для дополнительного отделения раствора от породы. Очищенный раствор из третьей ступени поступает в приёмные ёмкости – в приёмный блок буровых насосов для подачи его в скважину.

Оборудование циркуляционных систем скомплектовано заводом в следующие блоки:

блок очистки раствора;

промежуточный блок (один или два);

приёмный блок.

Базой для комплектовки блоков служат прямоугольные ёмкости, установленные на санных основаниях.

    Гидравлическое давление глинистых и цементных растворов после остановки циркуляции.

    Поглощения. Причины их возникновения.

По глощения буровых или тампонажных растворов - вид осложнений, которыйпроявляется уходом жидкости из скважины в пласт горных пород. В отличии от фильтрации, поглощения характерны тем что в ГП поступают все фазы жидкости. А при фильтрации лишь некоторые. На практике поглощения также определяют как суточный уход бурового раствора в пласт в объеме, превышающим естественную убыль за счет фильтрации и со шламом. Для каждого района принята своя норма. Обычно допускается несколько м3 в сутки. Поглощения – наиболее распространенный вид осложнений, особенно в районах Урало-Поволжья восточной и юго-восточной Сибири. Поглощения встречаются в разрезах, в которых имеются обычно трещиноватые ГП, расположены наибольшие деформации пород и их размыв обусловлены тектоническими процессами. Например в Татарии на борьбу с поглощениями ежегодно тратят 14% календарного времени, что превышает затраты времени на мех. бурения. В результате поглощений ухудшаются условия проводки скважины:

1.Увеличивается прихватоопасность инструмента, т.к. резко снижается скорость восходящего потока промывочной жидкости выше зоны поглощения, если при этом крупные частицы шлама не уходят в пласт, то он скапливаются в стволе, вызывая затяжки и прихват инструмента. Особенно увеличивается вероятность прихвата инструмента оседающим шламом после остановки насосов (циркуляции).

2. Усиливаются осыпи обвалы в неустойчивых породах. Могут возникать ГНВП из имеющихся в разрезе флюидосодержащих горизонтов. Причина – снижение давления столба жидкости. При наличии двух или более одновременно вскрытых пластов с различными коэф. Ка и Кп между ними могут возникать перетоки, затрудняющие изоляционные работы и последующие цементирование скважины.

Теряется много времени и материальных средств (инертных наполнителей, тампонажных материалов) на изоляцию, простои и аварии, вызывающие поглощениями.

Причины возникновения поглощений

Качественную роль фактора, определяющих величину ухода раствора в зону поглощений можно проследить, рассматривая течения вязкой жидкости в круговом пористом пласте или круговой щели. Формулу для расчета расхода поглощаемой жидкости в пористом круговом пласте получим, решив систему уравнений:

1.Уравнение движения (В форме Дарси)

V=K/M*(dP/dr): (1) где V, P, r, M- соответственно скорость течения, текущее давление, радиус пласта, вязкость.

2. Уравнение сохранения массы (неразрывность)

V=Q/F (2) где Q, F=2πrh , h – соответственно расход поглощения жидкости, переменная по радиусу площадь, толщина зоны поглощения.

3. Уравнение состояния

ρ=const (3) решая эту систему уравнений: 2 и 3 в 1 получим:

Q=(K/M)*2 π rH (dP/dr)

Q= (2 π HK(P с -P пл ))/Mln (rk/rc) (4) формула Дюпии

Аналогичную формулу(4) Буссенеско можно получить и для m круговых трещин (щелей) одинаково раскрытых и равно отстоящих друг от друга.

Q= [(πδ3(Pс-Pпл))/6Mln (rk/rc) ] *m (5)

δ- раскрытие (высота) щели;

m- число трещин (щелей);

M- эффективная вязкость.

Ясно, что для уменьшения расхода поглощаемой жидкости по формуле (4) и (5) надо увеличивать параметры в знаменатели и уменьшать их в числителе.

Согласно (4) и (5)

Q=£(H(или m), Pпл, rk, Pc, rc, M, K, (илиδ)) (6)

Параметры, входящие в функцию (6) по происхождению на момент вскрытия зоны поглощения можно условно разделить на 3 группы.

1.группа – геологические параметры;

2.группа – технологические параметры;

3.группа – смешенные.

Это деление условное, поскольку в ходе эксплуатации, т.е. технологического воздействия (отбор жидкости, заводнения и т.д.) на залежь изменяется также Pпл, rk

    Поглощения в породах с закрытыми трещинами. Особенность индикаторных кривых. Гидроразрыв и его предупреждение.

Особенность индикаторных кривых.

Дальше будем рассматривать прямую 2.

Приближенно индикаторную кривую для пород с искусственно открываемыми закрытыми трещинами может быть описана следующей формулой: Рс = Рб +Рпл+ 1/А*Q+BQ2 (1)

Для пород с естественно открытыми трещинами индикаторная кривая является частным случаем формулы (1)

Рс-Рпл= ΔР=1/А*Q=А*ΔР

Таким образом, в породах с открытыми трещинами поглощение начнется при любых значениях репрессии, а в породах с закрытыми трещинами – только после создания в скважине давления равное давлению гидроразрыва Рс*. Главная мера борьбы с поглощениями в породах с закрытыми трещинами (глины, соли) – не допускать гидроразрыва.

    Оценка эффективности работ по ликвидации поглощений.

Эффективность работ по изоляции характеризуется приемистостью (А) зоны поглощения, которую удается достичь в ходе изоляционных работ. Если при этом полученная приемистость А оказывается ниже некоторого технологически допустимого значения приемистости Аq, характеризующаяся для каждого района, то изоляционные работы можно считать успешными. Таким образом условии изоляции можно записать в виде А≤Аq (1) А=Q/Рс- Р* (2) Для пород с искусственно открываемыми трещинами Р* = Рб+Рпл+Рр (3) где Рб-боковое давление горной породы, Рр - предел прочности на разрыв г.п. В частном случаи Рб и Рр = 0 для пород с естественными открытыми трещинами А= Q/Pc - Рпл (4) , если не допустить малейшего поглощения, то Q=0 и А→0,

тогда Рс<Р* (5) Для зоны с открытыми трещинами формула (5) заменяется Рс=Рпл= Рпогл (6). Если давление в скважине определяется гидростатикой Рс = ρqL то (5 и 6) в привычных обозначениях примет вид: ρо≤Кп (7) и ρо= Ка=Кп (8). На практике трудно определить давление поглощения Р* , поэтому в ряде районов, например в Татарии оценка эффективности изоляционных работ проводят не по индексу давления поглощения Кп а по дополнительной приемистости Аq. В Татарии допустимые приемистости по тех. воде принято Аq≤ 4 м3/ч*МПа. Значение Аq свое для каждого района и различных поглощаемых жидкостей. Для воды оно принимается обычно более, а при растворе с наполнителем Аq берется меньше. Согласно 2 и 4 А=f (Q; Рс) (9). Т.е все способы борьбы с поглощениями основаны на воздействии на две управляемые величины (2 и 4) , т.е. на Q и Рс.

    Способы борьбы с поглощениями в процессе вскрытия зоны поглощения.

Традиционные способы предупреждения поглощений ос­нованы на уменьшении перепадов давления на поглощающий пласт или изменении а/т) фильтрующейся жидкости. Если вместо снижения перепада давления на пласт увеличить вяз­кость путем добавления закупоривающих материалов, бенто­нита или других веществ, интенсивность поглощения будет изменяться обратно пропорционально увеличению вязкости, как это следует из формулы (2.86). Практически, если регули­ровать параметры раствора, вязкость можно изменять лишь в сравнительно узких пределах. Предотвращение поглощений путем перехода на промывку раствором с повышенной вяз­костью возможно только при условии разработки научно обоснованных требований к этим жидкостям, учитывающих особенности течения их в пласте. Совершенствование приемов предупреждения поглощений, основанных на снижении перепадов давления на поглощаю­щие пласты, неразрывно связано с глубоким изучением и разработкой методов проводки скважин при равновесии в системе скважина - пласт. Буровой раствор, проникая в поглощающий пласт на оп­ределенную глубину и загустевая в каналах поглощения, со­здает дополнительное препятствие на пути движения бурово­му раствору из ствола скважины в пласт. Свойство раствора создавать сопротивление движению жидкости внутри пласта используют при проведении профилактических мероприятий с целью предотвращения поглощений. Сила такого сопротив­ления зависит от структурно-механических свойств раствора, размеров и формы каналов, а также от глубины проникно­вения раствора в пласт.

Чтобы сформулировать требования к реологическим свой­ствам буровых растворов при прохождении поглощающих пластов, рассмотрим кривые (рис. 2.16), отражающие зависи­мость напряжения сдвига и скорость деформации de/df для некоторых моделей неньютоновской жидкости. Прямая 1 со­ответствует модели вязкопластичной среды, для которой ха­рактерно предельное напряжение сдвига т0. Кривая 2 харак­теризует поведение псевдопластических жидкостей, у кото­рых с ростом скорости сдвига замедляется темп роста на­пряжения, и кривые выполаживаются. Прямая 3 отражает реологические свойства вязкой жидкости (ньютоновской). Кривая 4 характеризует поведение вязкоупрутих и дилатант-ных жидкостей, у которых напряжение сдвига резко увели­чивается с ростом скорости деформации. К вязкоупругим жидкостям, в частности, относятся слабые растворы некото­рых полимеров (окись полиэтилена, гуаровая смола, поли-акриламид и др.) в воде, которые обнаруживают свойство резко снижать (в 2-3 раза) гидродинамические сопротивления при течении жидкостей с большими числами Рейнольдса (эффект Томса). В то же время вязкость этих жидкостей при движении их по поглощающим каналам будет высокой вслед­ствие высоких скоростей сдвига в каналах. Бурение с промывкой аэрированными буровыми раство­рами является одним из радикальных мероприятий в ком­плексе мер и способов, предназначенных для предупреждения и ликвидации поглощений при бурении глубоких скважин. Аэрация бурового раствора снижает гидростатическое дав­ление, способствует тем самым возвращению его в достаточ­ном количестве на поверхность и соответственно нормальной очистке ствола скважины, а также отбору представительных проб проходимых пород и пластовых флюидов. Технико-экономические показатели при бурении скважин с промывкой забоя аэрированным раствором выше по срав­нению с показателями, когда в качестве бурового раствора используется вода или другие промывочные жидкости. Значи­тельно улучшается также качество вскрытия продуктивных пластов, особенно на месторождениях, где эти пласты имеют аномально низкие давления.

Эффективным мероприятием по предотвра­щению поглощения бурового раствора является введение в циркулирующий буровой раствор наполнителей. Цель их применения состоит в создании тампонов в каналах погло­щения. Эти тампоны служат основой для отложения фильтрационной (глинистой) корки и изоляции поглощающих пла­стов. В.Ф. Роджерс считает, что закупоривающим агентом мо­жет быть практически любой материал, который состоит из частиц достаточно малых размеров и при вводе которых в буровой раствор он может прокачиваться буровыми насоса­ми. В США для закупоривания поглощающих каналов приме­няют более ста типов наполнителей и их комбинаций. В ка­честве закупоривающих агентов используют древесную стружку или мочало, рыбью чешую, сено, резиновые отходы, листочки гуттаперчи, хлопок, коробочки хлопчатника, во­локна сахарного тростника, ореховую скорлупу, гранулиро­ванные пластмассы, перлит, керамзит, текстильные волокна, битум, слюду, асбест, изрезанную бумагу, мох, изрезанную коноплю, хлопья целлюлозы, кожу, пшеничные отруби, бо­бы, горох, рис, куриные перья, комки глины, губку, кокс, камень и др. Эти материалы можно применять отдельно и в комбинациях, изготовленных промышленностью или состав­ляемых перед использованием. Определить в лаборатории пригодность каждого закупоривающего материала весьма трудно из-за незнания размера отверстий, которые должны быть закупорены.

В зарубежной практике особое внимание уделяется обеспечению "плотной" упаковки наполнителей. Придерживаются мнения Фернаса, согласно которому наиболее плотная упа­ковка частиц отвечает условию распределения их по разме­рам по закону геометрической прогрессии; при ликвидации поглощения наибольший эффект может быть получен при максимально уплотненной пробке, особенно в случае мгно­венного ухода бурового раствора.

Наполнители по качественной характеристике подразде­ляются на волокнистые, пластинчатые и зернистые. Волокнистые материалы имеют растительное, животное, минеральное происхождение. Сюда относятся и синтетичес­кие материалы. Тип и размер волокна значительно влияют на качество работ. Важна устойчивость волокон при циркуляции их в буровом растворе. Материалы дают хорошие результа­ты при закупоривании песчаных и гравийных пластов с зер­нами диаметром до 25 мм, а также при закупоривании тре­щин в крупнозернистых (до 3 мм) и мелкозернистых (до 0,5 мм) породах.

Пластинчатые материалы пригодны для закупорки пластов крупнозернистого гравия и трещин размером до 2,5 мм. К ним относят: целлофан, слюду, шелуху, хлопковые семена и т.д.

Зернистые материалы: перлит, измельченная резина, ку­сочки пластмассы, ореховая скорлупа и др. Большинство из них эффективно закупоривают пласты гравия с зернами диаметром до 25 мм. Перлит дает хорошие результаты в гра­вийных пластах с диаметром зерен до 9-12 мм. Ореховая скорлупа размером 2,5 мм и менее закупоривает трещины размером до 3 мм, а более крупная (до 5 мм) и измельченная резина закупоривают трещины размером до 6 мм, т.е. ими можно закупорить трещин в 2 раза больше, чем при исполь­зовании волокнистых или пластинчатых материалов.

При отсутствии данных о размерах зерен и трещин по­глощающего горизонта применяют смеси волокнистых с пла­стинчатыми или зернистыми материалами, целлофана со слюдой, волокнистых с чешуйчатыми и зернистыми материа­лами, а также при смешивании зернистых материалов: пер­лита с резиной или ореховой скорлупой. Лучшей смесью для ликвидации поглощения при низких давлениях является высококоллоидный глинистый раствор с добавками волокнистых материалов и листочков слюды. Во­локнистые материалы, откладываясь на стенке скважины, образуют сетку. Листочки слюды укрепляют эту сетку и за­купоривают более крупные каналы в породе, а поверх всего этого образуется тонкая и плотная глинистая корка.

    Газоводонефтепроявления. Их причины. Признаки поступления пластовых флюидов. Классификация и распознавание видов проявлений.

При поглощении жидкость (промывочная или тампонажная) течет из скважины в пласт, а при проявлении наоборот – из пласта в скважину. Причины поступления: 1) поступление в скважину в месте с выбуренной породы флюид содержащих пластов. В этом случае не обязательно выше и ниже давление в скважине по сравеннию с пластовым; 2) если давление в скважине ниже пластового, т.е имеет место дипрессия на пласт основные причины возникновения дипрессии т.е снижения давления на пласт в скважине следующие: 1) не долив скважины промывочной жидкостью при подъёме инструмента. Необходимы обязательно устройство для автодолива в скважину; 2) снижения плотности промывочной жидкости из за её вспенивания (газирования) при соприкосновение жидкости с воздухом на поверхности в желобной системе, а также из за обработки п.ж ПАВ. Необходима дэгазация (механическая, химическая); 3) бурение скважины в несовместимых условиях. На схеме два пласта. Для первого пласта характерно Ка1 и Кп1; для второго Ка2 и Кп2. первый пласт должны бурить на растворе ρ0,1 (между Ка1 и Кп1), второй пласт ρ0,2 (Рис.)

Невозможно вскрывать второй пласт на растворе с плотностью для первого пласта, так как будет его поглощения в во втором пласте; 4) резких колебаний гидродинамического давления при остановки насоса, СПО и др. работах, усугубляемых повышением статического напряжения сдвига и наличие сальников на колонне;

5) заниженная плотность п.ж принятой в техническом проекте из за плохого знания фактического распределения пластового давления (Ка), т.е геология района. Эти причины больше относятся к разведочным скважинам; 6) низкий уровень оперативного уточнения пластовых давлений путем прогнозирования их в ходе углубления скважины. Не использования методов прогнозирования d-экспоненты, σ (сигма)-экспонента и.т.д; 7) выпадения утяжелителя из бурового раствора и снижения гидравлического давления. Признаки поступления пластового флюида являются: 1) повышения уровня циркулирующей жидкости в приемной емкости насоса. Нужен уровнемер; 2) из раствора, выходящего из скважины на устье выделяется газ, наблюдается кипение раствора; 3) после остановки циркуляции раствор продолжает вытекать из скважины (скважина переливает); 4) резко поднимается давление при неожиданном вскрытие пласта с АВПД. При поступление нефти из пластов её пленка остается на стенках желобов или течет поверх раствора в желобах. При поступления пластовой воды, изменяются свойства п.ж. Плотность её обычно падает, вязкость может снизится, а может и увеличиться (после поступления соленой воды). Водоотдача обычно увеличивается, изменяется рН, электрическое сопротивление обычно снижается.

Классификация поступления флюидов. Она производится по сложности мероприятий необходимых для их ликвидаций. Подразделяются на три группы: 1) проявление- неопасное поступление пластовых флюидов, не нарушающие процесс бурения и принятую технологию работ; 2) выброс – поступление флюидов которые можно ликвидировать только путем специального целенаправленного изменения технологии бурения имеющимися на буровой средствами и оборудованием; 3) фонтан – вступления флюида, ликвидация которого требует применения дополнительных средств и оборудования (кроме имеющихся на БУ) и которая связана с возникновением в системе скважина-пласт давлений, угрожающих целостности о.к. , устьевого оборудования и пластов в незакрепленной части скважины.

    Установка цементных мостов. Особенности выбора рецептуры и приготовления тампонажного раствора для установки мостов.

Одна из серьезных разновидностей технологии процесса це­ментирования - установка цементных мостов различного на­значения. Повышение качества цементных мостов и эффективности их работы - неотъемлемая часть совершенствования процессов бу­рения, заканчивания и эксплуатации скважин. Качеством мос­тов, их долговечностью определяется также надежность охра­ны недр окружающей среды. Вместе с тем промысловые дан­ные свидетельствуют, что часто отмечаются случаи установки низкопрочных и негерметичных мостов, преждевременного схватывания цементного раствора, прихвата колонных труб и т.д. Эти осложнения обусловлены не только и не столько свойст­вами применяемых тампонажных материалов, сколько специ­фикой самих работ при установке мостов.

В глубоких высокотемпературных скважинах при проведе­нии указанных работ довольно часто происходят аварии, свя­занные с интенсивным загустеванием и схватыванием смеси глинистого и цементного растворов. В некоторых случаях мос­ты оказываются негерметичными или недостаточно прочными. Успешная установка мостов зависит от многих природных и технических факторов, обусловливающих особенности форми­рования цементного камня, а также контакт и "сцепление" его с горными породами и металлом труб. Поэтому оценка несущей способности моста как инженерного сооружения и изучение условий, существующих в скважине, обязательны при прове­дении этих работ.

Цель установки мостов - получение устойчивого водогазонефтенепроницаемого стакана цементного камня определенной прочности для перехода на вышележащий горизонт, забуривания нового ствола, укрепления неустойчивой и кавернозной ча­сти ствола скважины, опробования горизонта с помощью испы­тателя пластов, капитального ремонта и консервации или лик­видации скважин.

По характеру действующих нагрузок можно выделить две категории мостов:

1) испытывающих давление жидкости или газа и 2) испытывающих нагрузку от веса инструмента во время забуривания второго ствола, применения испытателя пластов или в других случаях (мосты, этой категории, должны помимо газоводонепроницаемости обладать весьма высокой механичес­кой прочностью).

Анализ промысловых данных показывает, что на мосты мо­гут создаваться давления до 85 МПа, осевые нагрузки до 2100 кН и возникают напряжения сдвига на 1 м длины моста до 30 МПа. Такие значительные нагрузки возникают при опробо­вании скважин с помощью испытателей пластов и при других видах работ.

Несущая способность цементных мостов в значительной мере зависит от их высоты, наличия (или отсутствия) и состояния глинистой корки или остатков бурового раствора на колонне. При удалении рыхлой части глинистой корки напряжение сдвига составляет 0,15-0,2 МПа. В этом случае даже при воз­никновении максимальных нагрузок достаточна высота моста 18-25 м. Наличие на стенках колонны слоя бурового (глинис­того) раствора толщиной 1-2 мм приводит к уменьшению на­пряжения сдвига и к увеличению необходимой высоты до180-250 м. В связи с этим высоту моста следует рассчитывать по формуле Нм ≥ Но – Qм/пDc [τм] (1) где Н0 - глубина установки нижней части моста; QM - осевая нагрузка на мост, обусловливаемая перепадом давления и раз­грузкой колонны труб или испытателя пластов; Dс - диаметр скважины; [τм] - удельная несущая способность моста, значе­ния которой определяются как адгезионными свойствами тампонажного материала, так и способом установки моста. Герметичность моста также зависит от его высоты и состоя­ния поверхности контакта, так как давление, при котором про­исходит прорыв воды, прямо пропорционально длине и обратно пропорционально толщине корки. При наличии между обсадной колонной и цементным камнем глинистой корки с напряжением сдвига 6,8-4,6 МПа, толщиной 3-12 мм градиент давления прорыва воды составляет соответственно 1,8 и 0,6 МПа на 1 м. При отсутствии корки прорыв воды происходит при градиенте давления более 7,0 МПа на 1 м.

Следовательно, герметичность моста в значительной мере зависит также от условий и способа его установки. В связи с этим высоту цементного моста следует также определять и из выражения

Нм ≥ Но – Рм/[∆р] (2) где Рм - максимальная величина перепада давлений, действу­ющего на мост при его эксплуатации; [∆р] - допустимый гради­ент давления прорыва флюида по зоне контакта моста со стен­кой скважины; эту величину также определяют в основном в зависимости от способа установки моста, от применяемых тампонажных материалов. Из значений высоты цементных мостов, определенных по формулам (1) и (2), выбирают большее.

Установка моста имеет много общего с процессом цементиро­вания колонн и обладает особенностями, которые сводятся к следующему:

1) используется малое количество тампонажных материа­лов;

2) нижняя часть заливочных труб ничем не оборудуется, стоп-кольцо не устанавливается;

3) не применяются резиновые разделительные пробки;

4) во многих случаях производится обратная промывка скважин для "срезки" кровли моста;

5) мост ничем не ограничен снизу и может растекаться под действием разности плотностей цементного и бурового раство­ров.

Установка моста - простая по замыслу и способу проведения операция, которая в глубоких скважинах существенно ослож­няется под действием таких факторов, как температура, давле­ние, газоводонефтепроявления и др. Немаловажное значение имеют также длина, диаметр и конфигурация заливочных труб, реологические свойства цементного и бурового растворов, чистота ствола скважины и режимы движения нисходящего и восходящего потоков. На установку моста в не обсаженной части скважины значительное влияние оказывает кавернозность ствола.

Цементные мосты должны быть достаточно прочными. Практика работ показывает, что если при испытании на проч­ность мост не разрушается при создании на него удельной осевой нагрузки 3,0-6,0 МПа и одновременной промывки, то его прочностные свойства удовлетворяют условиям как забуривания нового ствола, так и нагружения от веса колонны труб или испытателя пластов.

При установке мостов для забуривания нового ствола к ним предъявляется дополнительное требование по высоте. Это обус­ловлено тем, что прочность верхней части (Н1) моста должна обеспечить возможность забуривания нового ствола с допусти­мой интенсивностью искривления, а нижняя часть (Н0) - на­дежную изоляцию старого ствола. Нм=Н1+Но = (2Dс* Rc)0,5+ Но(3)

где Rc - радиус искривления ствола.

Анализ имеющихся данных показывает, что получение на­дежных мостов в глубоких скважинах зависит от комплекса одновременно действующих факторов, которые могут быть разде­лены на три группы.

Первая группа - природные факторы: температура, давле­ние и геологические условия (кавернозность, трещиноватость, действие агрессивных вод, водо- и газопроявления и поглоще­ния).

Вторая группа - технологические факторы: скорость движе­ния потоков цементного и бурового растворов в трубах и кольце­вом пространстве, реологические свойства растворов, химичес­кий и минералогический состав вяжущего материала, физико-механические свойства цементного раствора и камня, контракционный эффект тампонажного цемента, сжимаемость бурового раствора, неоднородность плотностей, коагуляция бурового раствора при смешении его с цементным (образование высоко­вязких паст), величина кольцевого зазора и эксцентричность расположения труб в скважине, время контакта буферной жид­кости и цементного раствора с глинистой коркой.

Третья группа - субъективные факторы: использование не­приемлемых для данных условий тампонажных материалов; неправильный подбор рецептуры раствора в лаборатории; недо­статочная подготовка ствола скважины и использование бурово­го раствора с высокими значениями вязкости, СНС и водоотда­чи; ошибки при определении количества продавочной жидкос­ти, места расположения заливочного инструмента, дозировки реагентов для затворения цементного раствора на скважине; применение недостаточного числа цементировочных агрегатов; применение недостаточного количества цемента; низкая сте­пень организации процесса установки моста.

Увеличение температуры и давления способствует интен­сивному ускорению всех химических реакций, вызывая быст­рое загустевание (потерю прокачиваемости) и схватывание там­понажных растворов, которые после кратковременных остано­вок циркуляции иногда невозможно продавить.

До настоящего времени основной способ установки цемент­ных мостов - закачивание в скважину цементного раствора в проектный интервал глубин по колонне труб, спущенной до уровня нижней отметки моста с последующим подъемом этой колонны выше зоны цементирования. Как правило, работы про­водят без разделительных пробок и средств контроля за их движением. Процесс контролируют по объему продавочной жидкости, рассчитываемому из условия равенства уровней це­ментного раствора в колонне труб и кольцевом пространстве, а объем цементного раствора принимают равным объему скважи­ны в интервале установки моста. Эффективность способа низка.

Прежде всего следует отметить, что вяжущие материалы, применяемые для цементирования обсадных колонн, пригодны для установки прочных и герметичных мостов. Некачественная установка мостов или вообще их от­сутствие, преждевременное схватывание раствора вяжущих веществ и другие факторы в определенной степени обусловлены неверным подбором рецептуры растворов вяжущих веществ по срокам загустевания (схватывания) или отклонениями от подо­бранной в лаборатории рецептуры, допущенными при приго­товлении раствора вяжущих.

Установлено, что для уменьшения вероятности возникнове­ния осложнений сроки схватывания, а при высоких температу­рах и давлениях сроки загустевания должны превышать про­должительность работ по установке мостов не менее чем на 25 %. В ряде случаев при подборе рецептур растворов вяжущих не учитывают специфики работ по установке мостов, заключаю­щихся в остановке циркуляции для подъема колонны заливоч­ных труб и герметизации устья.

В условиях высоких температур и давления сопротивление сдвигу цементного раствора даже после кратковременных оста­новок (10-20 мин) циркуляции может резко возрасти. Поэтому циркуляцию восстановить не удается и в большинстве случаев колонна заливочных труб оказывается прихваченной. Вследствие этого при подборе рецептуры цементного раство­ра необходимо исследовать динамику его загустевания на кон­систометре (КЦ) по программе, имитирующей процесс уста­новки моста. Время загустевания цементного раствора Тзаг соответствовать условию

Тзаг>Т1+Т2+Т3+1,5(Т4+Т5+Т6)+1,2Т7 где T1, Т2, T3 - затраты времени соответственно на приготовле­ние, закачивание и продавливание цементного раствора в сква­жину; Т4, Т5, Т6 - затраты времени на подъем колонны зали­вочных труб до места срезки моста, на герметизацию устья и производство подготовительных работ по срезке моста; Тт - за­траты времени на срезку моста.

По аналогичной программе необходимо исследовать смеси цементного раствора с буровым в соотношении 3:1,1:1 и 1:3 при установке цементных мостов в скважинах с высокими темпера­турой и давлением. Успешность установки цементного моста в значительной степени зависит от точного соблюдения подобранной в лабора­тории рецептуры при приготовлении цементного раствора. Здесь главные условия - выдерживание подобранного содер­жания химических реагентов и.жидкости затворения и водоцементного отношения. Для получения возможно более однородного тампонажного раствора его следует приготовлять с использованием осреднительной емкости.

    Осложнения и аварии при бурении нефтегазовых скважин в условиях многолетней мерзлоты и меры их предупреждения .

При бурении в интервалах распространения ММП в результате совместного физико-химического воздей­ствия и эрозии на стенки скважины сцементированные льдом песчано-глинистые отложения разрушаются и легко размы­ваются потоком бурового раствора. Это приводит к интен­сивному кавернообразованию и связанным с ним обвалам и осыпям горных пород.

Наиболее интенсивно разрушаются породы с низким по­казателем льдистости и слабоуплотненные породы. Теплоем­кость таких пород невысокая, и поэтому их разрушение происходит существенно быстрее, чем пород с высокой льдистостью.

Среди мерзлых пород встречаются пропласткн талых по­род, многие из которых склонны к поглощениям бурового раствора при давлениях, незначительно превышающих гидро­статическое давление столба воды в скважине. Поглощения в такие пласты бывают весьма интенсивные и требуют специ­альных мероприятий для их предупреждения или ликвидации

В разрезах ММП обычно наиболее неустойчивы породы четвертичного возраста в интервале 0 - 200 м. При традици­онной технологии бурения фактический объем ствола в них может превосходить номинальный в 3 - 4 раза. В результате сильного кавернообразования. которое сопровождается появ­лением уступов, сползанием шлама и обвалами пород кон­дукторы во многих скважинах не были спущены до проект­ной глубины.

В результате разрушения ММП в ряде случаев наблюдалось проседание кондуктора и направления, а иногда вокруг устья скважины образовывались целые кратеры, не позволяющие вести буровые работы.

В интервале распространения ММП трудно обеспечить цементирование и крепление ствола вследствие создания за­стойных зон бурового раствора в больших кавернах, откуда его невозможно вытеснить тампонажным раствором. Цемен­тирование зачастую одностороннее, а цементное кольцо не­сплошное. Это порождает благоприятные условия для меж- пластовых перетоков и образования грифонов, д\я смятия колонн при обратном промерзании пород в случае длитель­ных "прослоев" скважины.

Процессы разрушения ММП достаточно сложные и мало изученные. 1 Циркулирующий в скважине буровой раствор термо- и гидродинамически взаимодействует как с горной породой, так и со льдом, причем это взаимодействие может существенно усиливаться физико-химическими процессами (например, растворением», которые не прекращаются даже при отрицательных температурах.

В настоящее время можно считать доказанным наличие осмотических процессов в системе порода (лед) - корка на стенке скважины - промывочная жидкость в стволе сква­жины. Эти процессы самопроизвольные и направлены в сто­рону, противоположную градиенту потенциала (температуры, давления, концентрации), те. стремятся к выравниванию концентраций, температур, давлений. Роль полупроницаемой перегородки может выполнять как фильтрационная корка, так и прискважинный гонкий слой самой породы. А в соста­ве мерзлой породы кроме льда как цементирующего ее ве­щества может находиться незамерзающая поровая вода с различной степенью минерализации. Количество незамерза­ющей воды в ММГ1 зависит от температуры, вещественного состава, солености и может быть оценено по эмпирической формуле

w = аТ~ ь .

1па = 0.2618 + 0.55191nS;

1п(- Ъ) = 0.3711 + 0.264S:

S - удельная поверхность породы. м а /п Г - температура породы, "С.

Из-за наличия в открытом стволе скважины промывочно­го бурового раствора, а в ММП - поровой жидкости с оп­ределенной степенью минерализации наступает- процесс са­мопроизвольного выравнивания концентраций иод действием осмотического давления. В результате этого может происхо­дить разрушение мерзлой породы. Если буровой раствор бу­дет иметь повышенную по сравнению с поровой водой кон­центрацию какой-нибудь растворенной соли, то на границе лед - жидкость начнутся фазовые превращения, связанные с понижением температуры плавления льда, т.е. начнется про­цесс его разрушения. А так как устойчивость стенки скважи­ны зависит в основном ото льда, как цементирующего поро­ду вещества, то в этих условиях устойчивость ММП, с,латаю­щих стенку скважины, будет потеряна, что может явиться причиной осыпей, обвалов, образования каверн и шламовых пробок, посадок и затяжек при спускоподъемных операциях, остановок спускаемых в скважину обсадных колонн, погло­щений буровых промывочных и тампонажных растворов.

Если степени минерализации бурового раствора и поровой воды ММП одинаковы, то система скважина - порода будет находиться в изотоническом равновесии, и разрушение ММП под физико-химическим воздействием маловероятно.

С увеличением степени минерализации промывочного агента возникают условия, при которых поровая вода с меньшей минерализацией будет перемещаться из породы в скважину. Из-за потерь иммобилизованной воды механическая прочность льда будет уменьшаться, лед может разру­шиться, что приведет к образованию каверны в стволе бурящейся скважины. Этот процесс интенсифицируется эрозионным воздействием циркулирующего промывочного агента.

Разрушение льда соленой промывочной жидкостью отме­чено в работах многих исследователей. Эксперименты, про­веденные в Ленинградском горном институте, показали, что с увеличением концентрации соли в омывающей лед жидкости разрушение льда интенсифицируется. Так. при содержании в циркулирующей воде 23 и 100 кг/м ‘ NaCl интенсивность раз­рушения льда при температуре минус 1 "С составляла соот­ветственно 0,0163 и 0,0882 кг/ч.

На процесс разрушения льда оказывает влияние также длите,"льность воздействия соленой промывочной жидкости. Так, при воздействии на лед 3%-ным раствором NaCl потеря массы образца льда с температурой минус 1 ’С составим: через 0,5 ч 0,62 п через 1.0 ч 0.96 г: через 1,5 ч 1,96 г.

По мере растепления прискважинной зоны ММП осво­бождается часть ее норового пространства, куда также может фильтроваться промывочная жидкость или ее дисперсионная среда. Этот процесс может оказаться еще одним физико­=имическим фактором, способствующим разрушению ММП. Он может сопровождаться осмотическим перетоком жидкос­ти из скважин в породу, если концентрация какой-нибудь растворимой соли в жидкости ММП больше, чем в жидкос­ти. заполняющей ствол скважины.

Следовательно, чтобы свести к минимуму отрицательное влияние физико-химических процессов на состояние ствола бурящейся в ММП скважины, необходимо, в первую очередь, обеспечить равновесную концентрацию на стенке скважины компонентов бурового промывочного раствора и внутрипо- ровой жидкости в ММП.

К сожалению, это требование не всегда выполнимо на практике. Поэтому чаще прибегают к защите цементирующе­го ММП льда от физико-химического воздействия буровым раствором пленками вязких жидкостей, которые покрывают не только обнаженные скважиной поверхности льда, но и частично прилегающее к скважине внутрипоровое простран­ство. разрывая тем самым непосредственный контакт мине­рализованной жидкости со,льдом.

Как указывают АВ Марамзин и А А Рязанов, при пере­ходе от промывки скважин соленой водой к промывке более вязким глинистым раствором интенсивность разрушения льда уменьшилась в 3,5 - 4 раза при одинаковой концентрации в них NaCI. Она снижалась еще больше, когда буровой рас­твор обрабатывали защитными коллоидами (КМЦ, ССБ|. Подтверждена также положительная роль добавок к бурово­му раствору высококоллоидного бентонитового глннопорош- ка и гипана.

Таким образом, для предупреждения кавернообразования, разрушения устьевой зоны, осыпей и обвалов при бурении скважин в ММП. буровой промывочный раствор должен от­вечать следующим основным требованиям:

обладать низким показателем фильтрации:

обладать способностью создавать на поверхности льда в ММП плотную, непроницаемую пленку:

обладать низкой эрозионной способностью; иметь низкую удельную теплоемкость;

образовывать фильтрат, не создающий с жидкостью поро­ды истинных растворов;

быть гидрофобным к поверхности льда.

Тема: Бурение нефтяных и газовых скважин.

План: 1. Общие сведения о нефтегазовых операциях.

2. Способы бурения скважин.

3. Классификация скважин.

1.Общие сведения о нефтегазовых операциях.

Бурение скважин - это процесс сооружения направленной горной выработки большой длины и малого (по сравнению с длиной) диаметра. Начало скважины на по­верхности земли называют устьем, дно - забоем. Этот про­цесс - бурение - распространен в различных отраслях на­родного хозяйства.

Цели и задачи бурения

Нефть и газ добывают, пользуясь скважина­ми, основными процессами строительства которых являются бурение и крепление. Необходимо осуществлять качествен­ное строительство скважин во все возрастающих объемах при кратном снижении сроков их проводки, а также при уменьшении трудо- и энергоемкости и капитальных затрат.

Бурение скважин - единственный метод результативной разработки, приращения добычи и запасов нефти и газа.

Цикл сооружения нефтяных и газовых скважин до сдачи их в эксплуатацию состоит из следующих последовательных звеньев:

проходка ствола скважины, осуществление которой воз­можно только при выполнении параллельно протекающих работ двух видов - углубление забоя посредством локально­го разрушения горной породы и очистка ствола от разру­шенной (выбуренной) породы;

разобщение пластов, состоящее из последовательных ра­бот двух видов - закрепление стенок ствола обсадными тру­бами, соединенными в обсадную колонну, и герметизация (це­ментирование, тампонирование) заколонного пространства;

освоение скважины как эксплуатационного объекта.

2. Способы бурения скважин.

Распространенные способы вращательного бу­рения - роторное, турбинное и бурение электробуром - пред­полагают вращение разрушающего породу рабочего инстру­мента - долота. Разрушенная порода удаляется из скважины закачиваемым в колонну труб и выходящим через заколон-ное пространство буровым раствором, пеной или газом.

Роторное бурение

При роторном бурении долото вращается вместе со всей колонной бурильных труб; вращение переда­ется через рабочую трубу от ротора, соединенного с силовой установкой системой трансмиссий. Нагрузка на долото созда­ется частью веса бурильных труб.

При роторном бурении максимальный крутящий момент колонны зависит от сопротивления породы вращению доло­та, сопротивлений трения колонны и вращающейся жидкости о стенку скважины, а также от инерционного эффекта упру­гих крутильных колебаний.

В мировой буровой практике наиболее распространен ро­торный способ: почти 100 % объема буровых работ в США и Канаде выполняется этим способом. В последние годы наме­тилась тенденция увеличения объемов роторного бурения и в России, даже в восточных районах. Основные преимущества роторного бурения перед турбинным - независимость регу­лирования параметров режима бурения, возможность сраба­тывания больших перепадов давления на долоте, значитель­ное увеличение проходки за рейс долота в связи с меньшими частотами его вращения и др.

Турбинное бурение

При турбинном бурении долото соединяется с валом турбины турбобура, которая приводится во вращение движением жидкости под давлением через систему роторов и статоров. Нагрузка создается частью веса бурильных труб.

Наибольший крутящий момент обусловлен сопротивлени­ем породы вращению долота. Максимальный крутящий мо­мент, определяемый расчетом турбины (значением ее тор­мозного момента), не зависит от глубины скважины, частоты вращения долота, осевой нагрузки на него и механических свойств разбуриваемых пород. Коэффициент передачи мощ­ности от источника энергии к разрушающему инструменту в турбинном бурении выше, чем в роторном.

Однако при турбинном бурении невозможно независимое регулирование параметров режима бурения, и при этом вели­ки затраты энергии на 1 м проходки, расходы на амортиза­цию турбобуров и содержание цехов по их ремонту.

Турбинный способ бурения получил широкое распрост­ранение в России благодаря работам ВНИИБТ.

Бурение винтовыми (объемными) двигателями

Рабочие органы двигателей созданы на основе многозаходного винтового механизма, что позволяет полу­чить необходимую частоту вращения при повышенном по сравнению с турбобурами вращающем моменте.

Забойный двигатель состоит из двух секций - двигатель­ной и шпиндельной.

Рабочими органами двигательной секции являются статор и ротор, представляющие собой винтовой механизм. В эту секцию входит также двухшарнирное соединение. Статор при помощи переводника соединяется с колонной бурильных труб. Вращающий момент посредством двухшарнирного со­единения передается с ротора на выходной вал шпинделя.

Шпиндельная секция предназначена для передачи осевой нагрузки на забой, восприятия гидравлической нагрузки, дей­ствующей на ротор двигателя, и уплотнения нижней части вала, что способствует созданию перепада давления.

В винтовых двигателях вращающий момент зависит от пе­репада давления в двигателе. По мере нагружения вала разви­ваемый двигателем вращающий момент растет, увеличивается и перепад давления в двигателе. Рабочая характеристика вин­тового двигателя с требованиями эффективной отработки долот позволяет получить двигатель с частотой вращения вы­ходного вала в пределах 80-120 об/мин с увеличенным вра­щающим моментом. Указанная особенность винтовых (объемных) двигателей делает их перспективными для внед­рения в практику буровых работ.

Бурение электробуром

При использовании электробуров вращение долота осуществляется электрическим (трехфазным) двигате­лем переменного тока. Энергия к нему подается с поверхно­сти по кабелю, расположенному внутри колонны бурильных труб. Буровой раствор циркулирует так же, как и при ро­торном способе бурения. Кабель внутрь колонны труб вво­дится через токоприемник, расположенный над вертлюгом. Электробур присоединяют к нижнему концу бурильной ко­лонны, а долото крепят к валу электробура. Преимущество электрического двигателя перед гидравлическим состоит в том, что у электробура частота вращения, момент и другие параметры не зависят от количества подаваемой жидкости, ее физических свойств и глубины скважины, и в возможнос­ти контроля процесса работы двигателя с поверхности. К недостаткам относятся сложность подвода энергии к элект­родвигателю особенно при повышенном давлении и необхо­димость герметизации электродвигателя от бурового рас­твора.

Перспективные направления в развитии способов бурения в мировой практике

В отечественной и зарубежной практике ве­дутся научно-исследовательские и опытно-конструкторские

работы в области создания новых методов бурения, техноло­гий, техники.

К ним относятся углубление в горных породах с исполь­зованием взрывов, разрушение пород при помощи ультра­звука, эрозионное, с помощью лазера, вибрации и др.

Некоторые из названных методов получили развитие и применяются, хотя и в незначительном объеме, зачастую на стадии эксперимента.

Гидромеханический метод разрушения горных пород при углублении скважин все чаще используется в экспе­риментальных и полевых условиях. С.С. Шавловским прове­дена классификация водяных струй, которые могут приме­няться при бурении скважин. Основа классификации - развиваемое давление, рабочая длина струй и степень их воздействия на породы различного состава, сцементирован-ности и прочности в зависимости от диаметра насадки, начального давления струи и расхода воды. Применение во­дяных струй позволяет в сравнении с механическими спосо­бами повысить технико-экономические показатели проходки скважины.

На VII Международном симпозиуме (Канада, 1984) были представлены результаты работ по использованию водяных струй в бурении. Его возможности связываются с непрерыв­ной, пульсирующей или прерывистой подачей флюида, нали­чием или отсутствием абразивного материала и технико-технологическими особенностями способа.

Эрозионное бурение обеспечивает скорости углубления в 4-20 раз больше, чем при роторном бурении (в аналогичных условиях). Это объясняется, в первую очередь, значительным увеличением мощности, подводимой к забою по сравнению с другими методами.

Сущность его состоит в том, что к долоту специальной конструкции вместе с буровым раствором подается абразив­ный материал - стальная дробь. Размер гранул - 0,42 - 0,48 мм, концентрация в растворе - 6 %. Через насадки до­лота с большой скоростью на забой подается этот раствор с дробью и забой разрушается. В бурильной колонне последо­вательно устанавливают два фильтра, предназначенные для отсева и удержания частиц, размер которых не позволяет им пройти через насадки долота.

Один фильтр - над долотом, второй - под ведущей тру­бой, где можно осуществлять очистку. Химическая обработка бурового раствора с дробью сложнее, чем обработка обыч­ного раствора, особенно при повышенных температурах.

Особенность в том, что необходимо удерживать дробь в рас­творе во взвешенном состоянии и затем генерировать этот абразивный материал.

После предварительной очистки бурового раствора от газа и шлама при помощи гидроциклонов дробь отбирают и со­храняют в смоченном состоянии. Затем раствор пропускают через гидроциклоны тонкой очистки и дегазатор и восста­навливают его утраченные показатели химической обработ­кой. Часть бурового раствора смешивают с дробью и подают в скважину, на пути смешивая с обычным буровым раство­ром (в расчетном соотношении).

Лазеры - квантовые генераторы оптического диапазона - одно из замечательных достижений науки и техники. Они нашли широкое применение во многих областях науки и техники.

По зарубежным данным в настоящее время возможна ор­ганизация производства газовых лазеров непрерывного дей­ствия с выходной мощностью 100 кВт и выше. Коэффициент полезного действия (КПД) газовых лазеров может достигать 20 - 60 %. Большая мощность лазеров при условии получения чрезвычайно высоких плотностей излучения достаточна для расплавления и испарения любых материалов, в том числе горных пород. Горная порода при этом также растрескива­ется и шелушится.

Экспериментально установлена минимальная плотность мощности лазерного излучения, достаточного для разрушения пород плавлением: для песчаников, алевролитов и глин она составляет примерно 1,2-1,5 кВт/см 2 . Плотность мощности эффективного разрушения нефтенасыщенных горных пород из-за термических процессов горения нефти, особенно при поддуве в зону разрушения воздуха или кислорода, ниже и составляет 0,7 - 0,9 кВт/см 2 .

Подсчитано, что для скважины глубиной 2000 м и диамет­ром 20 см нужно затратить около 30 млн кВт энергии лазер­ного излучения. Проводка скважин такой глубины пока не конкурентоспособна в сравнении с традиционными механи­ческими методами бурения. Однако имеются теоретические предпосылки повышения КПД лазеров: при КПД, равном 60 %, энергетические и стоимостные затраты существенно снизятся и его конкурентоспособность повысится. При использовании лазера в случае бурения скважин глубиной 100 - 200 м стои­мость работ относительно невелика. Но во всех случаях при лазерном бурении форма сечения может быть запрограмми­рованной, а стенка скважины будет формироваться из расплава горной породы и будет представлять собой стеклооб­разную массу, позволяющую повысить коэффициент вытес­нения бурового раствора цементным. В некоторых случаях можно, очевидно, обойтись без крепления скважин.

Зарубежные фирмы предлагают несколько конструкций лазеров. Основу их составляет мощный лазер, размещенный в герметичном корпусе, способном выдержать высокое дав­ление. Температуроустойчивость пока не прорабатывалась. По этим конструкциям излучение лазера передается на забой через светопроводящее волокно. По мере разрушения (плавления) горной породы лазеробур подается вниз; он мо­жет быть снабжен установленным в корпусе вибратором. При вдавливании снаряда в расплав породы стенки скважины могут уплотняться.

В Японии начат выпуск углекислотных газовых лазеров, которые при использовании в бурении существенно (до 10 раз) повысят скорость проходки.

Сечение скважины при формировании ствола этим мето­дом может иметь произвольную форму. Компьютер по раз­работанной программе дистанционно задает режим сканиро­вания лазерного луча, что позволяет запрограммировать раз­мер и форму ствола скважины.

Проведение лазеротермических работ возможно в даль­нейшем в перфорационных работах. Лазерная перфорация обеспечит управляемость процесса разрушения обсадной ко­лонны, цементного камня и породы, а также может способ­ствовать проникновению каналов на значительную глубину, что, безусловно, повысит степень совершенства вскрытия пласта. Однако оплавление пород, целесообразное при углуб­лении скважины, здесь неприемлемо, что должно быть учте­но при использовании этого метода в дальнейшем.

В отечественных работах есть предложения о создании ла-зероплазменных установок для термического бурения сква­жин. Однако транспортировка плазмы к забою скважины пока затруднена, хотя и ведутся исследования по возможнос­ти разработки световодов ("световодных труб").

Одним из наиболее интересных методов воздействия на горные породы, обладающих критерием "универсаль­ность", является метод их плавления при помощи непосред­ственного контакта с тугоплавким наконечником - пенетра-тором. Значительные успехи в создании термопрочных мате­риалов позволили перенести вопрос о плавлении горных пород в область реального проектирования. Уже при темпе­ратуре примерно 1200-1300 °С метод плавления работоспо-

собен в рыхлых грунтах, песках и песчаниках, базальтах и других породах кристаллического фундамента. В породах осадочного комплекса проходка глинистых и карбонатных пород требует, по-видимому, более высокой температуры.

Метод бурения плавлением позволяет получить на стенках скважины достаточно толстую ситалловую корку с гладкими внутренними стенками. Метод обладает высоким коэффици­ентом ввода энергии в породу - до 80-90 %. При этом мо­жет быть, хотя бы принципиально, решена проблема удале­ния расплава с забоя. Выходя по выводящим каналам или просто обтекая гладкий пенетратор, расплав, застывая, обра­зует шлам, размерами и формой которого можно управлять. Шлам выносится жидкостью, которая циркулирует выше бу­рового снаряда и охлаждает его верхнюю часть.

Первые проекты и образцы термобуров появились в 60-х годах, а наиболее активно теория и практика плавления гор­ных пород начали развиваться с середины 70-х годов. Эф­фективность процесса плавления определяется в основном температурой поверхности пенетратора и физическими свой­ствами горных пород и мало зависит от механических и прочностных свойств. Это обстоятельство обусловливает оп­ределенную универсальность метода плавления в смысле при­менимости его для проходки различных пород. Температур­ный интервал плавления этих различных полиминеральных многокомпонентных систем в основном укладывается в диа­пазон 1200-1500 °С при атмосферном давлении. В отличие от механического метод разрушения горных пород плавлением с увеличением глубины и температуры залегающих пород по­вышает свою эффективность.

Как уже говорилось, параллельно с проходкой осуществ­ляются крепление и изоляция стенок скважины в результате создания непроницаемого стекловидного кольцевого слоя. Пока еще не ясно, будет ли происходить износ поверхност­ного слоя пенетратора, каковы его механизм и интенсив­ность. Не исключено, что бурение плавлением, хотя и с не­большой скоростью, может проводиться непрерывно в пре­делах интервала, определяемого конструкцией скважины. Сама же эта конструкция из-за непрерывного крепления стенок может быть значительно упрощена, даже в сложных геологических условиях.

Можно себе представить технологические процедуры, свя­занные только с креплением и изоляцией стенок последова­тельно с проходкой ствола способом обычного механическо­го бурения. Эти процедуры могут относиться только к ин-

тервалам, представляющим опасность в связи с возможнос­тью возникновения различных осложнений.

С точки зрения технической реализации следует предус­мотреть токопровод к нагнетательным элементам пенетрато-ра аналогично используемому при электробурении.

3. Классификация скважин

Скважины можно классифицировать по на­значению, профилю ствола и фильтра, степени совершенства и конструкции фильтра, количеству обсадных колонн, распо­ложению на поверхности земли и т.д.

По назначению различают скважины: опорные, парамет­рические, структурно-поисковые, разведочные, нефтяные, га­зовые, геотермальные, артезианские, нагнетательные, наблю­дательные, специальные.

По профилю ствола и фильтра скважины бывают: верти­кальные, наклонные, направленно-ориентированные, гори­зонтальные.

По степени совершенства выделяют скважины: сверхсо­вершенные, совершенные, несовершенные по степени вскрытия продуктивных пластов, несовершенные по характе­ру вскрытия продуктивных пластов.

По конструкции фильтра скважины классифицируют на: незакрепленные, закрепленные эксплуатационной колонной, закрепленные вставным щелевым или сетчатым фильтром, закрепленные гравийно-песчаным фильтром.

По количеству находящихся в скважине колонн выделяют скважины: одноколонные (только эксплуатационная колон­на), многоколонные (двух-, трех-, п-колонные).

По расположению на поверхности земли скважины разли­чают: расположенные на суше, шельфовые, морские.

Назначение структурно-поисковых скважин - установле­ние (уточнение) тектоники, стратиграфии, литологии разреза пород, оценка возможных продуктивных горизонтов.

Разведочные скважины служат для выявления продуктив­ных пластов, а также для оконтуривания разрабатываемых нефтяных и газовых месторождений.

Добывающие (эксплуатационные) предназначены для до­бычи нефти и газа из земных недр. К этой категории отно­сят также нагнетательные, оценочные, наблюдательные и пье­зометрические скважины.

Нагнетательные необходимы для закачки в пласт воды, га­за или пара с целью поддержания пластового давления или обработки призабойной зоны. Эти меры направлены на уд­линение периода фонтанного способа добычи нефти или по­вышение эффективности добычи.

Назначение оценочных скважин-определение начальной водонефтенасыщенности и остаточной нефтенасыщенности пласта и проведение иных исследований.

Контрольные и наблюдательные скважины служат для на­блюдения за объектом разработки, исследования характера продвижения пластовых флюидов и изменения газонефтена-с ыщенности пласта.

Опорные скважины бурят для изучения геологического строения крупных регионов с целью установления общих за­кономерностей залегания горных пород и выявления возмож­ностей образования в этих породах месторождений нефти и газа.

Контрольные вопросы:

1. Как классифицируют скважины?

2. Какие известны способы бурения скважин?

3. Что представляет собой лазерное бурение? ?

Литература

1. Баграмов Р.А. Буровые машины и комплексы: Учеб. для вузов. - М.: Недра,1988. - 501 с.

2. Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Заканчивание скважин: Учеб. пособие для

вузов. - М: ООО «Недра-Бизнесцентр», 2000. - 670 с.

3. Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Осложнения и аварии при бурении нефтяных

и газовых скважин: Учеб. для вузов. - М.: ООО «Недра-Бизнесцентр», 2000. -679 с.

4. Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Технология бурения нефтяных и газовых

скважин: Учеб. для вузов. - М.: ООО «Недра-Бизнесцентр», 2001. - 679 с.

5. Болденко Д.Ф., Болденко Ф.Д., Гноевых А.Н. Винтовые забойные двигатели. - М.:Недра,

Завгородний Иван Александрович

студент 2 курса, механического отделения по специальности «Бурение нефтяных и газовых скважин» Астраханского государственного политехнического колледжа, г. Астрахань

E-mail:

Кузнецова Марина Ивановна

преподаватель специальных дисциплин Астраханского государственного политехнического колледжа, г. Астрахань

E-mail:

Введение. С древних времен человечеством ведется добыча нефти, сначала применялись примитивные способы: при помощи колодцев, сбор нефти с поверхности водоемов, обработка известняка или песчаника, пропитанного нефтью. В 1859 году в США штат Пенсильвания, появляется механическое бурение скважин на нефть, примерно в это же время началось бурение скважин в России. В 1864 и 1866 годах на Кубани были пробурены первые скважины с дебитом 190 т/сут.

Изначально нефтяные скважины бурились ручным штанго-вращательным способом, вскоре перешли к бурению ручным штанговым ударным способом. Ударно-штанговый способ получил широкое распространение на нефтяных промыслах Азербайджана. Переход от ручного способа к механическому бурению скважин привел к необходимости механизации буровых работ, крупный вклад в развитие которых внесли русские горные инженеры Г.Д. Романовский и С.Г. Войслав. В 1901 году впервые в США применено роторное бурение с промывкой забоя циркулирующим потоком жидкости (при помощи бурового раствора), причем подъем выбуренной породы циркулирующим потоком воды изобрел французский инженер Фовелль еще в 1848 году. С этого момента начался период развития и совершенствования вращательного способа бурения. В 1902 году в России роторным способом в Грозненском районе была пробурена первая скважина глубиной 345 м .

На сегодняшний день США занимает лидирующую позицию в нефтяной индустрии, ежегодно пробуривается 2 млн. скважин, четверть из них оказывается продуктивными, Россия занимает пока только второе место. В России и за рубежом применяются: ручное бурение (добыча воды); механическое; управляемое шпиндельное бурение (система безопасного бурения, разработанная в Англии); взрывные технологии бурения; термическое; физико-химическое, электроискровые и другие способы. Кроме этого, разрабатывается множество новых технологий бурения скважин, например, в США Колорадо горный институт разработал лазерную технологию бурения, основанную на прожигании породы.

Технология бурения. Механический способ бурения наиболее распространенный, он осуществляется ударным, вращательным и ударно-вращательным способами бурения. При ударном способе бурения разрушение горных пород происходит за счет ударов породоразрушающего инструмента по забою скважины. Разрушение горных пород за счет вращения прижатого к забою породоразрушающего инструмента (долото, коронка), называется вращательным способом бурения.

При бурении нефтяных и газовых скважин в России применяют исключительно вращательный способ бурения. При использовании вращательного способа бурения, скважина высверливается вращающимся долотом, при этом разбуренные частицы породы в процессе бурения выносятся на поверхность непрерывно циркулирующей струей бурового раствора или нагнетаемым в скважину воздухом или газом. В зависимости от местонахождения двигателя вращательное бурение разделяют на роторное бурение и бурение турбобуром. При роторном бурении - вращатель (ротор) находится на поверхности, приводя во вращение долото на забое при помощи колонны бурильных труб, частота вращения 20-200 об/мин. При бурении с забойным двигателем (турбобур, винтовой бур или электробур) - крутящий момент передается от забойного двигателя, устанавливаемого над долотом.

Процесс бурения состоит из следующих основных операций: спуск бурильных труб с долотом в скважину до забоя и подъем бурильных труб с отработанным долотом из скважины и работы долота на забое, т. е. разрушение породы бурения. Эти операции периодически прерываются для спуска обсадных труб в скважину, чтобы предохранить стенки от обвалов и разобщить нефтяные (газовые) и водяные горизонты. Одновременно в процессе бурения скважин выполняется ряд вспомогательных работ: отбор керна, приготовление промывочной жидкости (бурового раствора), каротаж, замер кривизны, освоение скважины с целью вызова притока нефти (газа) в скважину и т. п.

На рисунке 1 представлена технологическая схема буровой установки.

Рисунок 1. Схема буровой установки для вращательного бурения: 1 - талевый канат; 2 - талевый блок; 3 - вышка; 4 - крюк; 5 - буровой шланг; 6 - ведущая труба; 7 - желоба; 8 - буровой насос; 9 - двигатель насоса; 10 - обвязка насоса; 11 - приемный резервуар (емкость); 12 - бурильный замок; 13 - бурильная труба; 14 - гидравлический забойный двигатель; 15 - долото; 16 - ротор; 17 - лебедка; 18 - двигатель лебедки и ротора; 19 - вертлюг

Буровая установка представляет собой комплекс машин и механизмов, предназначенных для бурения и крепления скважин. Буровой процесс сопровождается спуском и подъемом бурильной колонны, а также поддержанием ее на весу. Для уменьшения нагрузки на канат и снижения мощности двигателей применяют подъемное оборудование, состоящее из вышки, буровой лебедки и талевой системы. Талевая система состоит из неподвижной части кронблока, устанавливаемого наверху фонаря вышки и подвижной части талевого блока, талевого каната, крюка и штропов. Талевая система предназначена для преобразования вращательного движения барабана лебедки в поступательное перемещение крюка. Буровая вышка предназначена для подъема и спуска бурильной колонны и обсадных труб в скважину, а также для удержания на весу бурильной колонны во время бурения и равномерной ее подачи и размещения в ней талевой системы, бурильных труб и части оборудования. Спускоподъемные операции осуществляется с помощью бурильной лебедки. Буровая лебедка состоит из основания, на которой закреплены валы лебедки и соединены между собой зубчатыми передачами, все валы соединены с редуктором, а редуктор в свою очередь соединен с двигателем.

В наземное буровое оборудование входит приемный мост, предназначенный для укладки бурильных труб и перемещения по нему оборудования, инструмента, материалов и запасных частей. Система устройств для очистки промывочного раствора от выбуренной породы. И ряд вспомогательных сооружений.

Бурильная колонная соединяет буровое долото (породоразрушающий инструмент) с наземным оборудованием, т. е. буровой установкой. Верхняя труба в колонне бурильных труб квадратного сечения, она может быть шестигранной или желобчатой. Ведущая труба проходит через отверстие стола ротора. Ротор помещают в центре буровой вышки. Ведущая труба верхним концом соединяется с вертлюгом, предназначенного для обеспечения вращения бурильной колонны, подвешенной на крюке и подачи через нее промывочной жидкости. Нижняя часть вертлюга соединяется с ведущей трубой, и может вращаться вместе с колонной бурильных труб. Верхняя часть вертлюга всегда неподвижна .

Рассмотрим технологию проведения бурового процесса (рисунок 1). К отверстию неподвижной части вертлюга 19 присоединяется гибкий шланг 5, через который закачивается в скважину промывочная жидкость при помощи буровых насосов 8. Промывочная жидкость проходит по всей длине бурильной колонны 13 и поступает в гидравлический забойный двигатель 14, что приводит вал двигателя во вращение, а затем жидкость поступает в долото 15. Выходя из отверстий долота жидкость, промывает забой, подхватывает частицы разбуренной породы и вместе с ними через кольцевое пространство между стенками скважины и бурильными трубами поднимается наверх и направляется в прием насосов. На поверхности буровой раствор очищается от разбуренной породы, с помощью специального оборудования, после чего вновь подается в скважину .

Технологический процесс бурения во много зависит от бурового раствора, который в зависимости от геологических особенностей месторождения, готовится на водной основе, на нефтяной основе, с использованием газообразного агента или воздуха.

Вывод. Из выше изложенного видно, что технологии поведения буровых процессов различны, но подходящая для данных условий(глубины скважины, слагающей ее породы, давлений и др.), должна быть выбрана исходя из геологических и климатических условий. Так как, от качественно проведенного вскрытия продуктивного горизонта на месторождении, зависит в дальнейшем эксплуатационная характеристика скважины, а именно ее дебит и продуктивность.

Список литературы:

1.Вадецкий Ю.В. Бурение нефтяных и газовых скважин: учебник для нач. проф. образования. М.: Издательский центр «Академия», 2003. - 352 с. ISB№ 5-7695-1119-2.

2.Вадецкий Ю.В. Справочник бурильщика: учеб. пособие для нач. проф. образования. М.: Издательский центр «Академия», 2008. - 416 с. ISB№ 978-5-7695-2836-1.