Керамические материалы и их характеристика. Сырье для керамических материалов и изделий. Специальные керамические материалы

Виды керамических материалов. Керамические материалы относятся к основным материалам, оказывающим определяющее влияние на уровень и конкурентоспособность промышленной продукции. Это влияние сохранится и в ближайшем будущем. Войдя в технику и технологию в конце 1960-х гг., керамические материалы произвели настоящую революцию в материаловедении, за короткое время став, по общему мнению, третьими промышленными материалами после металлов и полимеров.

Керамические материалы были первым конкурентоспособным по сравнению с металлами классом материалов для использования при высоких температурах.

Основными разработчиками и производителями керамических материалов являются США и Япония. В табл. 2.1 приведена классификация основных видов керамических материалов.

Исследование, проведенное Национальным бюро стандартов США, показало, что использование керамических материалов позволило к 2000 г. осуществить экономию ресурсов страны в размере более 3 млрд долл. Ожидаемая экономия была достигнута, прежде всего, за счет использования транспортных двигателей с деталями из керамических материалов, керамических материалов для обработки резанием и оптокерамики для передачи информации. Помимо прямой экономии применение керамических материалов позволит снизить расход дорогих и дефицитных металлов: титана и тантала в конденсаторах, вольфрама и кобальта в режущих инструментах, кобальта, хрома и никеля в тепловых двигателях.

Изготовление керамических материалов. Керамическая технология предусматривает следующие основные этапы: получение исходных порошков, консолидацию порошков, т.е. изготовление компактных материалов, их обработку и контроль изделий.

При производстве высококачественных керамических материалов с высокой однородностью структуры используют порошки исходных материалов с размером частиц до 1 мкм. Процесс получения столь высокой степени дисперсности требует больших затрат энергии и является одним из основных этапов керамической технологии.

Характеристика основных видов керамических материалов

Функциональный тип керамических материалов

Используемые свойства

Применение

Используемые соединения

Электрокерамика

Электропроводимость, электроизоляционные, диэлектрические и пьезоэлектрические свойства

Интегральные схемы, конденсаторы, вибраторы, зажигатели, нагреватели, термисторы, транзисторы, фильтры, солнечные батареи, твердые электролиты

BeO, MgO, V2O3, ZnO, А1 2 0 3 , Zr0 2 , SiC, В 4 С, TiC, CdS, титанаты, Si 3 N 4

Магнстокерамика

Магнитные свойства

Головки магнитной записи, магнитные носители, магниты

Магнитомягкие и магнитотвердые ферриты

Оптокерамика

Прозрачность, поляризация, флуоресценция

Лампы высокого давления, ИК-прозрачные окна, лазерные материалы, световоды, элементы оптической памяти, экраны дисплеев, модуляторы

А1 2 0 3 , MgO, Y 2 0 2 , Si0 2 , Zr0 2 , T0 2 , Y 2 0 3 , Th0 2 , ZnS, CdS

Хемокерамика

Абсорбционная и адсорбционная способность, каталитическая активность, коррозионная стойкость

Сорбенты, катализаторы и их носители, электроды, датчики влажности газов, элементы химических реакторов

ZnO, Fe 2 0 3 , SnO, Si0 2 , MgO, BaS, CeS, TiB 2 , ZrB 2 , A1 2 0 3 , SiC, титаниды

Биокерамика

Биологическая совместимость, стойкость к биокоррозии

Протезы зубов, суставов

Системы оксидов

Термокерамика

Жаропрочность, жаростойкость, огнеупорность, теплопроводность, коэффициент термического расширения (КТР), теплоемкость

Огнеупоры, тепловые трубы, футеровка высокотемпературных реакторов, электроды для металлургии, теплообменники, теплозащита

SiC, TiC, В4С, TiB 2 , ZrB 2 , Si 3 N 4 , BeS, CeS, BeO, MgO, Zr0 2 , A1 2 0 3 , TiO, композиционные материалы

Механокерамика

Твердость, прочность, модуль упругости, вязкость разрушения, износостойкость, триботехнические свойства, КТР, термостойкость

Детали для тепловых двигателей; уплотнительные, антифрикционные и фрикционные детали; режущий инструмент; пресс-инструмент, направляющие и другие износостойкие детали

Si 3 N 4 , Zr0 2 , SiC, TiB 2 , ZnB 2 , TiC, TiN, WC, B 4 C, A1 2 0 3 , BN, композиционные материалы

Ядерная керамика

Радиационная стойкость, жаропрочность, жаростойкость, сечение захвата нейтронов, огнеупорность, радиоактивность

Ядерное горючее, футеровка реакторов, экранирующие материалы, поглотители излучения, поглотители нейтронов

U0 2 , U0 2 , Pu0 2 , UC, US, ThS, SiC, B 4 C, A1 2 0 3 , BeO

Сверхпроводящая

керамика

Эле ктроп ровод и мость

Линии электропередачи, магнитогазодинамические генераторы, накопители энергии, интегральные схемы, железнодорожный транспорт на магнитной подвеске, электромобили

Оксидные системы: La-Ba-Си-О; La-Sr-Си-О; Y-Ba-Cu-0

Измельчение производят механическим путем с помощью мелющих тел, а таюке распылением измельчаемого материала в жидком состоянии, осаждением на холодных поверхностях из парогазовой фазы, виброкавитационным воздействием на частицы, находящиеся в жидкости, с помощью самораспространяющегося высокотемпературного синтеза и другими методами.

Для сверхтонкого помола (частицы менее 1 мкм) наиболее перспективны вибрационные мельницы, или аттриторы.

Консолидация керамических материалов состоит из процессов формования и спекания. Различают три основные группы методов формования:

  • прессование под действием сжимающего давления, при котором происходит уплотнение порошка за счет уменьшения пористости;
  • пластичное формование выдавливанием прутков и труб через мундштук (экструзия) формовочных масс с пластификаторами, увеличивающими их текучесть;
  • шликерное литье для изготовления тонкостенных изделий любой сложной формы, в котором для формования используют жидкие суспензии порошков.

При переходе от прессования к пластичному формованию и шликерному литью увеличиваются возможности изготовления изделий сложной формы, однако усложняется процесс сушки изделий и удаления пластификаторов из керамического материала. Поэтому для изготовления изделий сравнительно простой формы предпочтение отдается прессованию, а более сложной - экструзии и шликерному литью.

При спекании отдельные частицы порошков превращаются в монолит и формируются окончательные свойства керамики. Процесс спекания сопровождается уменьшением пористости и усадкой.

При изготовлении керамических материалов применяют печи для спекания при атмосферном давлении, установки горячего изо- статического прессования (газостаты), прессы горячего прессования с усилием прессования до 1 500 кН. Температура спекания в зависимости от состава может составлять 2000...2 200 °С.

Часто применяют совмещенные методы консолидации, сочетающие формование со спеканием, а в некоторых случаях - синтез образующегося соединения с одновременным формованием и спеканием.

Обработка керамических материалов и контроль ее качества являются основными составляющими в балансе стоимости керамических изделий.

По некоторым данным, стоимость исходных материалов и консолидации составляет всего лишь 11 % (для металлов 43 %), в то время как на обработку приходится 38 % (для металлов 43 %), а на контроль 51 % (для металлов 14%).

К основным методам обработки керамических материалов относят термическую обработку и размерную обработку поверхности.

Термическую обработку керамических материалов производят с целью кристаллизации межзеренной стеклофазы. При этом на 20... 30 % повышаются твердость и вязкость разрушения материала.

Большинство керамических материалов с трудом поддаются механической обработке. Поэтому основным условием керамической технологии является получение при консолидации практически готовых изделий. Для доводки поверхностей керамических изделий применяют абразивную обработку алмазными кругами, электрохимическую, ультразвуковую и лазерную обработки. Эффективно применение защитных покрытий, позволяющих устранить мельчайшие поверхностные дефекты - неровности, риски и т.д.

Для контроля качества изготовления керамических деталей чаше всего используют рентгеновскую и ультразвуковую дефектоскопию.

Учитывая, что большинство керамических материалов имеет низкие вязкость и пластичность и соответственно низкую трещи- ностойкость, для аттестации изделий применяют методы механики разрушения с определением коэффициента интенсивности напряжений К к. Одновременно строят диаграмму, показывающую кинетику роста дефекта.

Количественно вязкость разрушения кристаллической керамики и стекла составляет примерно 1...2 МПа/м |/2 , в то время как для металлов значения /Г| С значительно выше (более 40 МПа/м |/2). Прочность химических межатомных связей, благодаря которой керамические материалы обладают высокой твердостью, химической и термической стойкостью, одновременно обусловливает их низкую способность к пластической деформации и склонность к хрупкому разрушению.

Возможны два подхода к повышению вязкости разрушения керамических материалов. Один из них, традиционный, связанный с совершенствованием способов измельчения и очистки порошков, их уплотнения и спекания. Второй подход состоит в торможении роста трещин под нагрузкой. Существуют несколько способов решения этой проблемы. Один из них основан на том, что в некоторых керамических материалах, например в диоксиде циркония Zr0 2 , под давлением происходит перестройка кристаллической структуры. Исходная тетрагональная структура Zr0 2 переходит в моноклинную, имеющую на 3...5% больший объем.

Расширяясь, зерна Zr0 2 сжимают трещину, и она теряет способность к распространению (рис. 2.1, а). При этом сопротивление хрупкому разрушению возрастает до 15 МПа/м |/2 .

Второй способ (рис. 2.1, б) состоит в создании композиционного материала введением в керамику волокон из более прочного

Рис. 2.1. Упрочнение конструкционной керамики включениями Zr0 2 (а), волокнами (б) и микротрещинами (в):

/ - тетрагональный Zr0 2 ; 2 - монолитный Zr0 2

керамического материала, например карбида кремния SiC. Развивающаяся трещина на своем пути встречает волокно и дальше не распространяется. Сопротивление разрушению стеклокерамики с волокнами SiC возрастает до 20 МПа/м |/2 , существенно приближаясь к соответствующим значениям для металлов.

Третий способ состоит в том, что с помощью специальных технологий весь керамический материал пронизывают микротрещинами (рис. 2.1, в). При встрече основной трещины с микротрещиной угол в острие трещины возрастает, происходит затупление трещины и она дальше не распространяется.

Определенный интерес представляет физико-химический способ повышения надежности керамических материалов. Он реализован для одного из наиболее перспективных керамических материалов на основе нитрида кремния Si 3 N 4 . Способ основан на образовании определенного стехиометрического состава твердых растворов оксидов металлов в нитриде кремния, получивших название сиалонов. Примером высокопрочной керамики, образующейся в этой системе, являются сиалоны состава Si^^Ai^Ng^O^, где х - число замещенных атомов кремния, азота в нитриде кремния, составляющее от 0 до 4,2. Важным свойством сиалоновой керамики является стойкость к окислению при высоких температурах, значительно более высокая, чем у нитрида кремния.

Свойства и применение керамических материалов. В современном машиностроении применение керамических материалов постоянно увеличивается. Они многообразны по химическому составу и физико-механическим характеристикам. Керамические материалы могут работать при высоких температурах - 1600... 2500°С (жаропрочные стали 800... I 200°С, молибден - 1 500 °С, вольфрам - 1 800 °С), они имеют плотность, в 2-3 раза меньшую, чем у жаропрочных материалов, твердость, близкую к твердости алмаза, отличные диэлектрические характеристики, высокую химическую стойкость. Запасы исходных материалов для производства керамики на земле неисчерпаемы. Из керамических материалов изготавливают детали газотурбинных и дизельных двигателей, тепловыделяющие элементы ядерных реакторов, легкую броню и элементы теплозащиты космических кораблей, тонкостенные поплавки и контейнеры для глубоководной техники, режущие пластины и оснастку для горячего деформирования металлов, плунжеры и уплотнительные кольца в насосах для перекачки агрессивных сред, элементы особоточных гироскопов и платы ЭВМ, подшипники, постоянные магниты и т.д.

Применение керамических материалов в автомобильных двигателях позволит поднять рабочую температуру в цилиндрах с I 200 до 1 600 °С, при этом сократить потери теплоты, снизить расход топлива, улучшить эксплуатационные характеристики. При изготовлении изделий из керамических материалов нельзя просто заменять металлические детали на керамические. Особо должны учитываться условия их работы и действующие нагрузки, поскольку все детали выполняются целиком и это может снизить прочность всей конструкции. Кроме того, она не имеет пластической деформации и обладает низкой ударной вязкостью.

Сформулированы основные требования, которые следует учитывать при проектировании керамических деталей.

В нагруженных зонах керамическая деталь не должна иметь концентраторов напряжений. Практически не используют в керамических конструкциях болтовые соединения, в них стараются не сверлить отверстия, делать уступы, проточки, чтобы избежать микротрещин. В местах контакта керамики с металлом устанавливают демпфирующие прокладки.

Металлические и керамические детали одного изделия должны иметь одинаковые ТКЛР, в противном случае предусматривают установку компенсационных прокладок, причем учитывают и переходные процессы, когда происходит нагрев или охлаждение.

Керамика имеет теплоемкость, в 2 раза большую, чем металл, что вызывает тепловые деформации и напряжения. Крайне желательно, чтобы температура керамической детали по всему объему была бы одинаковой. Наиболее благоприятно воспринимаются напряжения сжатия. При отсутствии нагрузки в керамических деталях не должны сохраняться остаточные напряжения его полимеризации.

В настоящее время используют керамические материалы на основе нитрида кремния - реакционно связанный, спеченный и горячепрессованный нитриды кремния с легирующими добавками. Реакционно связанный нитрид кремния имеет относительно низкую по сравнению с другими материалами прочность, но изготовленные из него детали сложного профиля дают стабильно малую усадку. Горячепрессованный нитрид кремния обладает максимальной прочностью. Свойства керамических материалов существенно зависят от рабочих параметров и технологии их изготовления. Разработаны составы керамик, которые по своим эксплуатационным характеристикам могут заменять жаропрочные стали, но разработки в области составов и технологии их получения продолжаются. Принципиальными недостатками керамических материалов являются их хрупкость и сложность обработки. Керамические материалы плохо работают в условиях механических или термических ударов, а также при циклических условиях нагружения. Им свойственна высокая чувствительность к надрезам. В то же время керамические материалы обладают высокой жаропрочностью, превосходной коррозионной стойкостью и маюй теплопроводностью, что позволяет с успехом использовать их в качестве элементов тепловой защиты.

При температурах выше 1 ООО “С керамические материалы прочнее любых сплавов, в том числе и суперсплавов, а их сопротивление ползучести и жаропрочность выше. К основным областям применения керамических материалов относятся режущий инструмент, детали двигателей внутреннего сгорания и газотурбинных двигателей и др.

Режущий керамический инструмент. Режущие керамические материалы характеризуют высокая твердость, в том числе при нагреве, износостойкость, химическая инертность к большинству металлов в процессе резания. По комплексу этих свойств керамические материалы существенно превосходят традиционные режущие материалы - быстрорежущие стали и твердые сплавы (табл. 2.2).

Высокие свойства режущих керамических материалов позволили существенно повысить скорость механической обработки стали и чугуна (табл. 2.3).

Для изготовления режущего инструмента широко применяются керамические материалы на основе оксида алюминия с добав-

Табл и ца 2.2

Сравнительные значения свойств инструментальных материалов

ками диоксида циркония, карбидов и нитридов титана, а также на основе бескислородных соединений - нитрида бора с кубической решеткой (р-BN), обычно называемого кубическим нитридом бора, и нитрида кремния Si 3 N 4 . Режущие элементы на основе кубического нитрида бора в зависимости от технологии получения выпускаемые под названиями эльбор, боразон, композит 09 и другие, имеют твердость, близкую к твердости алмазного инструмента, и сохраняют устойчивость к нагреву на воздухе до 1 400 °С. В отличие от алмазного инструмента кубический нитрид бора химически инертен по отношению к сплавам на основе железа. Его можно использовать для чернового и чистового точения закаленных сталей и чугунов практически любой твердости.

Режущие керамические пластины используют для оснащения различных фрез, токарных резцов, расточных головок, специального инструмента.

Керамические двигатели. Из второго закона термодинамики следует, что для повышения КПД любого термодинамического процесса необходимо повышать температуру на входе в энергетическое преобразовательное устройство: КПД = 1 - Т 2 /Т ь где T t и Т 2 - температура соответственно на входе и выходе энергетического преобразовательного устройства. Чем выше температура Т и тем больше КПД.

Максимально допустимые температуры определяются теплостойкостью материала. Конструкционные керамические материалы допускают применение более высоких температур по сравнению с металлом и поэтому являются перспективными материалами для двигателей внутреннего сгорания и газотурбинных двигателей. Помимо более высокого КПД двигателей за счет повышения рабочей температуры преимуществами керамических материалов являются низкая плотность и теплопроводность, повышен-

Табл и ца 2.3

Сравнительные значения скорости резания при точении керамическим инструментом и инструментом из твердого сплава

ные термо- и износостойкость. Кроме того, при использовании керамических материалов снижаются или отпадают расходы на систему охлаждения.

Вместе с тем в технологии изготовления керамических двигателей остается ряд нерешенных проблем. К ним прежде всего относят проблемы обеспечения надежности, стойкости к термическим ударам, разработки методов соединения керамических деталей с металлическими и пластмассовыми.

Наиболее эффективно применение керамических материалов для изготовления дизельных адиабатных поршневых двигателей, имеющих керамическую изоляцию, и высокотемпературных газотурбинных двигателей.

Конструкционные материалы адиабатных двигателей должны быть устойчивы в области рабочих температур 1 300... 1 500 К, иметь предел прочности при изгибе о„ зг не менее 800 МПа и коэффициент интенсивности напряжений не менее 8 МПам |/2 . Этим требованиям в наибольшей мере удовлетворяют керамические материалы на основе диоксида циркония Zr0 2 и нитрида кремния. Наиболее широко работы по керамическим двигателям проводят в Японии и США. Японская фирма lsuzu Motors Ltd. освоила изготовление форкамеры и клапанного механизма адиабатного двигателя, Nissan Motors Ltd. - крыльчатки турбокомпрессора, фирма Mazda Motors Ltd. - форкамеры и пальцев толкателя.

Компания Cammin Engine (США) освоила альтернативный вариант двигателя грузовика с плазменными покрытиями из Zr0 2 , нанесенными на днище поршня, внутреннюю поверхность цилиндра, впускные и выпускные каналы. Экономия топлива на 100 км пути составила более 30%.

Фирма lsuzu Motors Ltd. сообщила об успешной разработке керамического двигателя, работающего на бензине и дизельном топливе. Автомобиль с таким двигателем развивает скорость до 150 км/ч, коэффициент полноты сгорания топлива на 30...50% выше, чем у обычных двигателей, а масса на 30 % меньше.

Конструкционным керамическим материалом для газотурбинных двигателей в отличие от адиабатного двигателя не требуется низкая теплопроводность. Учитывая, что керамические детали газотурбинных двигателей работают при более высоких температурах, они должны сохранять прочность на уровне 600 МПа при температуре до 1 670 К (в перспективе до 1 920 К) при пластической деформации не более 1 % за 500 ч работы. В качестве материала для таких ответственных деталей газотурбинных двигателей, как камера сгорания, детали клапанов, ротор турбокомпрессора, статор, используют нитриды и карбиды кремния, имеющие высокую теплостойкость.

Повышение тактико-технических характеристик авиационных двигателей невозможно без применения керамических материалов.

Керамические материалы специального назначения. К керамическим материалам специального назначения относят сверхпроводящую керамику, керамику для изготовления контейнеров с радиоактивными отходами, броневой защиты военной техники и тепловой защиты головных частей ракет и космических кораблей.

Контейнеры для хранения радиоактивных отходов. Одним из сдерживающих факторов развития ядерной энергетики является сложность захоронения радиоактивных отходов. Для изготовления контейнеров применяют керамические материалы на основе оксидов В 2 0 3 и карбидов бора В 4 С в смеси с оксидами свинца РЬО или соединениями типа 2РЬО PbS0 4 . После спекания такие смеси образуют плотную керамику с малой пористостью. Она характеризуется сильной поглощающей способностью по отношению к ядерным частицам - нейтронам и у-квантам.

Ударопрочные броневые керамические материалы. Впервые эти материалы были использованы в авиации армии США во время войны во Вьетнаме. С тех пор непрерывно растет применение армиями разных стран брони из керамических материалов в комбинации с другими материалами для защиты сухопутных боевых машин, кораблей, самолетов и вертолетов. По разным оценкам рост применения броневой керамической защиты составляет около 5...7% в год. Одновременно наблюдается рост производства композиционной брони для индивидуальной защиты сил охраны правопорядка, обусловленный ростом преступности и актов терроризма.

По своей природе керамические материалы хрупкие. Однако при высокой скорости нагружения, например в случае взрывного удара, когда эта скорость превышает скорость движения дислокаций в металле, пластические свойства металлов не будут играть никакой роли и металл будет таким же хрупким, как и керамика. В этом конкретном случае керамические материалы существенно прочнее металла.

Важными свойствами керамических материалов, обусловившими их применение в качестве брони, являются высокие твердость, модуль упругости, температура плавления (разложения) при плотности, меньшей плотности материалов в 2 - 3 раза. Сохранение прочности при нагреве позволяет использовать керамические материалы для бронепрожигающих снарядов.

В качестве критерия М пригодности материала для броневой защиты может быть использовано следующее соотношение:

где Е - модуль упругости, ГПа; Н к - твердость по Кнупу, ГПа; о„- предел прочности при растяжении, МПа; Т т - температура плавления, К; р - плотность, г/см 3 .

В табл. 2.4 приведены основные свойства широко применяемых броневых керамических материалов в сравнении со свойствами броневой стали. Наиболее высокие защитные свойства имеют материалы на основе карбида бора. Их массовое применение сдерживает высокая стоимость метода прессования. Поэтому плитки из карбида бора используют при необходимости существенного снижения массы броневой защиты, например для защиты кресел и автоматических систем управления вертолетов, экипажа и десанта. Керамические материалы из диборида титана, имеющие наибольшие твердость и модуль упругости, применяют для защиты от тяжелых бронебойных и бронепрожигающих танковых снарядов.

Для массового производства керамических материалов наиболее перспективен сравнительно дешевый оксид алюминия. Керамические материалы на его основе используют для защиты живой силы, сухопутной и морской военной техники.

Поданным фирмы Morgan М. Ltd. (США), пластина из карбида бора толщиной 6,5 мм или из оксида алюминия толщиной 8 мм останавливает пулю калибром 7,62 мм, летящую со скоростью более 800 м/с при выстреле в упор. Для достижения того же эффекта

Таблица 2.4

Свойства ударопрочных керамических материалов

Материал

Плотность

Т вердость по Кнупу # к, ГПа

Предел прочности при растяжении о в, МПа

Модуль упругости Е, ГПа

Температура плавления Т пл, К

Критерий бронестой- кости Л/, (ГПа м) 3 - К/кг

Горячепрессованный карбид бора В 4 С

Горячепрессованный диборид титана TiB 2

Карбид кремния SiC

Спеченный оксид алюминия А1 2 0 3

Броневая

стальная броня должна иметь толщину 20 мм, при этом масса ее будет в 4 раза больше, чем у керамической.

Наиболее эффективно применение композиционной брони, состоящей из нескольких разнородных слоев. Наружный керамический слой воспринимает основную ударную и тепловую нагрузку, дробится на мелкие частицы и рассеивает кинетическую энергию снаряда. Остаточная кинетическая энергия снаряда поглощается упругой деформацией подложки, в качестве которой может использоваться сталь, дюралюминий или кевларовая ткань в несколько слоев. Эффективно покрытие керамического слоя легкоплавким инертным материалом, играющим роль своеобразной смазки и несколько изменяющим направление летящего снаряда, что обеспечивает рикошет. Конструкция керамической бронепанели показана на рис. 2.2. Бронепанель состоит из отдельных последовательно соединенных керамических пластин размером 50x50 или ЮОх 100 мм. Для защиты от бронебойных пуль калибром 12 мм используют пластины из А1 2 0 3 толщиной 12 мм и 35 слоев кевлара, а от пуль калибром 7,62 мм, находящихся на вооружении НАТО, - пластины из А1 2 0 3 толщиной 6 мм и 12 слоев кевлара.

Во время войны в Персидском заливе широкое использование армией США керамической брони из А1 2 0 3 , SiC и В 4 С показало ее высокую эффективность. Для броневой защиты также перспективно применение материалов на основе AIN, TiB и полиамидных смол, армированных керамическими волокнами.

Керамические материалы в ракетно-космическом машиностроении. При полете в плотных слоях атмосферы головные части ракет, космических кораблей, кораблей многоразового использования, нагреваемые до высокой температуры, нуждаются в надежной тепловой защите. Материалы для тепловой защиты должны


Рис. 2.2.

а у б - составные элементы бронепанели для защиты от бронебойных пуль разного калибра; в - фрагмент бронепанели, собранной из элементов а и б; I - бронебойная пуля калибром 12,7 мм; 2- пуля калибром 7,62 мм; 3 - защитное

покрытие частично снято обладать высокой теплостойкостью и прочностью в сочетании с минимальными значениями коэффициента термического расширения, теплопроводности и плотности.

Исследовательский центр НАСА США (NASA Ames Research Centre) разработал составы теплозащитных волокнистых керамических плит, предназначенных для космических кораблей многоразового использования.

Для повышения прочности, отражательной способности и абляционных характеристик внешней поверхности теплозащитных материалов их покрывают слоем эмали толщиной около 300 мкм. Эмаль, содержащую SiC или 94 % Si0 2 и 6 % В 2 0 3 , в виде шликера наносят на поверхность, а затем подвергают спеканию при температуре 1 470 К. Плиты с покрытиями используют в наиболее нагреваемых местах космических кораблей, баллистических ракет и сверхзвуковых самолетов. Они выдерживают до 500 десятиминутных нагревов в электродуговой плазме при температуре 1 670 К. Варианты системы керамической тепловой защиты лобовых поверхностей летательных аппаратов приведены на рис. 2.3.

Облицовочный слой предохраняет теплоизолирующий слой от абляционного и эрозионного разрушения и воспринимает основную тепловую нагрузку.

Радиопрозрачные керамические материалы. Для развития современной радио-, электронной и вычислительной техники необходимы материалы на основе оксида алюминия, нитридов бора, кремния, имеющие рабочую температуру до 3 000°С, обладающие стабильными значениями диэлектрической проницаемости и малыми диэлектрическими потерями с тангенсом угла диэлектрических потерь tg 8 = 0,0001 ...0,0002.

К таким материалам относят чистый оксид алюминия, горячепрессованный нитрид бора, керамические материалы ТСМ 303 и АРП-3, спеченный нитрид бора, ситалл Д-2, кварцевые керамические материалы, чистый нитрид кремния и др.

Радиопрозрачные материалы должны обладать комплексом свойств: стабильностью диэлектрических характеристик во всем диапазоне рабочих температур, термостойкостью, эрозионной


Рис. 2.3.

/ - керамический материал на основе SiC или SijN 4 ; 2 - теплоизоляция; 3 - спеченный керамический материал

стойкостью, высоким качеством поверхности, стойкостью к ионизирующим излучениям и др. Они выполняют роль конструкционного материала, из которого изготавливают несущие радиопроз- рачные элементы конструкций. Поскольку пористость оксидных керамик можно варьировать в пределах 0...90 %, это позволяет из одного и того же оксида получать материалы, принципиально отличающиеся по свойствам.

Материалы, получаемые методом структурирования, например из диоксида циркония, вообще не разрушаются при воздействии теплового потока любой интенсивности.

Примером структурирования является также получение си- таллов, в которых подбирают оптимальное соотношение кристаллической и аморфной фаз. Изменяя химический состав и структуру, можно получить целые классы ситаллов с заданными свойствами.

Другим направлением при производстве радиопрозрачных материалов является использование легирующих добавок. В частности, введение в оксид алюминия нескольких процентов оксидов магния и бора в 2 - 3 раза повышает его термостойкость и ударную вязкость при нулевом влагопоглощении. Введение в кварцевый керамический материал 2...5 % оксида хрома в 2-3 раза повышает интегральную степень черноты и в 2 раза замедляет затухание радиосигнала при высоких температурах.

Третьим направлением развития радиопрозрачных материалов является разработка нитридных материалов и композиций на их основе, в частности нитридов бора, кремния и алюминия.

Нитрид бора обладает лучшими диэлектрическими характеристиками из всех известных в настоящее время материалов, работающих при температуре до 2 000 °С, хотя имеет сравнительно низкие прочность и твердость. На его основе изготавливают, например, сибонит, содержащий нитрид бора и диоксид кремния. Изменяя их соотношение и дисперсность, можно получить ряд новых материалов, сочетающих достоинства нитрида бора и кварцевой керамики.

Последнее направление развития радиопрозрачных материалов - создание композиционных материалов, в частности керамических материалов, пропитанных органическими и неорганическим веществами, смолами и солями. Они сочетают в себе хорошие диэлектрические свойства при высоких температурах благодаря использованию керамической основы и высокие прочность и ударную вязкость благодаря связующему.

В зависимости от назначения и эксплуатационных характеристик изделия для него разрабатывают соответствующие радиопроз- рачные керамические материалы. Диэлектрическая проницаемость кварцевых керамических материалов монотонно возрастает с ростом температуры до 1 500 °С, а в диапазоне 1 500... 1 700 °С она резко

увеличивается на 18%, что связано с плавлением материала, сопровождающимся повышением его плотности до теоретического значения (2 210 кг/м 3 при 20 °С). После расплавления материал остается радиопрозрачным и его диэлектрическая проницаемость возрастает до 4,3 при температуре 2 500 °С. Поскольку по условиям работы изменение не должно превышать 10%, то кварцевые керамические материалы пригодны для рабочих температур до 1 350 °С, а оксид алюминия - до 815 °С. При увеличении пористости по объему от 5 до 20 % диэлектрическая проницаемость уменьшается прямо пропорционально уменьшению плотности керамики. Тангенс угла диэлектрических потерь tg 6 кварцевых керамических материалов составляет при комнатной температуре 0,0002 - 0,0004 на частоте Ю 10 Гц. При увеличении температуры до 1 000 °С tg 6 возрастает до 0,005.

Нитрид бора является пока единственным материалом, tg5 которого при температуре до 1 500 °С остается ниже 0,001. Причем изменение tg8 спеченного нитрида бора в диапазоне 20... 1 350 ”С не превышает 3%, для кварцевых керамических материалов эта величина равна 10%.

Освоена технология синтеза высокоактивного порошка нитрида бора, способного к спеканию при температурах выше 1 600 °С с образованием достаточно прочных заготовок. Такие материалы имеют примеси до 1 % и обладают изотропной структурой. Они являются хорошими изоляторами - удельное объемное сопротивление при комнатной температуре не менее 1 10 14 Ом см. Под действием импульса ядерного излучения tg 8 в нитриде бора возрастает до 0,01, а в кварцевой керамике не изменяется. Благодаря отличной термостойкости спеченный нитрид бора используется как конструкционный материал, хотя и имеет достаточно низкую прочность.

Материалы на основе нитрида бора, особенно горячепрессованные, имеют высокую теплопроводность, в то время как кварцевые керамические материалы ближе к теплоизоляторам. Ее теплопроводность в зависимости от пористости колеблется при температуре 600...700 К в пределах 0,2... 1,0 Вт/(м К). Высокая теплопроводность может быть и достоинством материала (чем выше теплопроводность, тем меньше тепловые напряжения), и недостатком, если радиопрозрачный материал выполняет и теплозащитные функции. У материалов на основе нитрида бора и алюмо- оксидных керамических материалов теплопроводность снижается по мере роста температуры.

Для кварцевых керамических материалов и ситалла Д-2 решающее значение имеет стеклообразная, аморфная фаза.

Оптимальное конструирование изделий, работающих на земле, в воде, в воздухе и космосе, позволяет более широко использовать радиопрозрачные материалы.

ОБЖИГОВЫЕ КАМЕННЫЕ МАТЕРИАЛЫ

Предохранение каменных материалов от разрушения

Основные причины разрушения природных каменных мате­риалов в сооружениях: замерзание воды в порах и трещинах, вы­зывающее внутренние напряжения; частое изменение температу­ры и влажности, вызывающее появление в материале микротре­щин; растворяющее действие воды и понижение прочности при водонасыщении; химическая коррозия, происходящая под дейст­вием газов, содержащихся в атмосфере (SO 2 , СО 2 и др.), и ве­ществ, растворенных в грунтовой или морской воде.

Конструктивную защиту открытых частей сооружений (цоколей, карнизов, поясков, столбов, парапетов) сводят к приданию им такой формы, которая облегчает отвод воды. Этому же способствует гладкая полированная поверхность облицовки и про­филированных деталей.

Для пористых каменных материалов, которые не полируются, используют химическую защиту , например,путем пропитки поверхностного слоя уплотняющими составами и нанесения на лицевую поверхность гидрофобизирующих (водоотталкивающих) составов. Кремнефторизацию (или флюатирование ) применяют для повышения стойкости наружной облицовки и других материалов, полученных из карбонатных пород. При пропитывании известняка раствором флюата (соли кремнефтористоводородной кислоты) происходит химическая реакция

2СаСО 3 + MgSiF6 = 2CaF 2 + MgF 2 + SiO 2 + 2CO 2

Полученные нерастворимые в воде вещества CaF 2 , MgF 2 и SiО 2 отлагаются в порах и уплотняют лицевой слой камня. В результате этого уменьшается его водопоглощение и возрастает морозостойкость; облицовка из камня меньше загрязняется пылью.

Некарбонатные пористые каменные материалы предварительно обрабатывают водными растворами кальциевых солей (например, СаС1 2), а после этого пропитывают флюатами.

Гидрофобизация , т.е. пропитка гидрофобными составами (например, кремнийорганическими жидкостями), понижает проникновение влаги в пористый камень, в частности при капиллярном подсосе. Для защиты камня от коррозии применяют пленкообразую­щие полимерные материалы – прозрачные и окрашенные. Также про­питывают поверхность камня мономером с последующей его полимеризацией.

Керамическими (от греческого «керамос» – глина) называют искусственные каменные материалы и изделия, получаемые высокотемпературным обжигом глин с минеральными добавками.

Классификация керамических изделий. По структуре черепка различают: а) плотные изделия со спекшимся черепком (материал, из которого состоят керамические изделия после обжига, в технологии керамики называют керамическим черепком) и водопоглощением менее 5 % (плитки для полов и облицовки фасадов, клинкерный кирпич); б) пористые изделия с водопоглощением более 5 % (стеновые, плитки внутренней облицовки стен).


По назначению различают керамические изделия: для стен (кирпич и керамические камни); облицовки фасадов (лицевой кирпич и камни); плитки для внутренней облицовки стен и полов; кровельные (черепица); санитарно-техническое оборудование (изделия из фаянса); дорог и подземных коммуникаций (дорожный кирпич, трубы и т.п.); теплоизоляции (легкий кирпич, фасонные изделия); кислотоупорные изделия (кирпич, плитки, трубы и т.п.); огнеупоры; заполнители для легких бетонов (керамзит, аглопорит).

Сырье для производства керамических изделий. Основным сырьевым материалом для производства строительных керамических изделий является глинистое сырье, применяемое в чистом виде, а чаще в смеси с добавками – отощающими, пластифицирующими, порообразующими, плавнями и др.

Основные свойства глин как сырья для производства керамики : пластичность и связность глиняного теста, способность отвердевать при высыхании и переходить в необратимое камневидное состояние при обжиге.

Пластичность глин обеспечивается содержанием в них глинистых частиц пластинчатой формы размером 0,005 мм и менее. Наличие между этими частицами тонких слоев воды за счет действия молекулярных и капиллярных сил обеспечивает связность частиц и способность их к скольжению относительно друг друга без потери связности.

При сушке глиняное тесто теряет воду и уменьшается в объеме. Этот процесс называется воздушной усадкой (2-12 % по объему). При этом глина затвердевает, но при добавлении воды вновь переходит в пластичное состояние. При обжиге при температуре около 1000 °С керамическая масса безвозвратно теряет свои пластические свойства и за счет образования новых минералов приобретает камневидное состояние, водостойкость и прочность. Одновременно с этим происходит дальнейшее уплотнение и усадка материала, которая называется огневой усадкой (2-8 %). Способность глин уплотняться при обжиге и образовывать камнеподобный черепок называется спекаемостью глин. В зависимости от температуры обжига получают пористый (около 1000 °С) или спекшийся (более 1100 °С) черепок.

Основные виды керамических изделий – этостеновые изделия, облицовочные материалы и изделия, керамические материалы и изделия специального назначения.

Стеновые изделия. В группу стеновых керамических материалов входят кирпич (одинарный, утолщенный, модульных размеров) и камни, изготовляемые способом полусухого прессования или пластического формования, а также крупноразмерные блоки и панели. Кирпич керамический одинарный имеет форму прямоугольного параллелепипеда с ровными гранями, прямыми ребрами и углами размерами 250´120´65 мм; утолщенный – размерами 250´120´88 мм. Кирпич может выпускаться полнотелым (без пустот и с технологическими пустотами в количестве не более 13 %) и пустотелым (с вертикальным или горизонтальным расположением пустот), а камни – только пустотелыми. Плотность кирпича и камней в зависимости от наличия и количества пустот находится в пределах от 1400 до
1900 кг/м 3 , теплопроводность – от 0,4 до 0,8 Вт/(м × ºС). По этим показателям пустотелые кирпич и камни, а также пористо-пустотелый кирпич (в состав керамической массы вводят выгорающие добавки) относятся к группе эффективных стеновых керамических изделий. Причем эти виды кирпича и камней подразделяют на условно-эффективные, улучшающие теплотехнические свойства стен, и эффективные, позволяющие значительно уменьшить толщину стен.

Марку камней по прочности определяют в зависимости от значений предела прочности при сжатии, а для кирпича – и с учетом предела прочности при изгибе. Марки по прочности полнотелого кирпича, а также пустотелых кирпича и камней с вертикальным расположением пустот – 75, 100, 125, 150, 175, 200, 250 и 300, а с горизонтально расположенными пустотами – 25, 35, 50, 100. Марки кирпича и камней по морозостойкости F 15, F 25, F 35, F 50. Водопоглощение не должно быть для полнотелого кирпича менее 8 %, для пустотелых изделий - менее 6 %. Масса кирпича в высушенном состоянии не должна быть более 4,3 кг, камней - не более 16 кг.

Эти изделия применяются для кладки наружных и внутренних стен, кладки фундаментов (из полнотелого кирпича).

Облицовочные материалы и изделия. Различают: фасадные облицовочные изделия – кирпич и камни керамические лицевые (укладывают в стену здания в перевязку с обыкновенными, они отличаются от последних повышенными физико-механическими показателями и улучшенными показателями внешнего вида); керамические изделия для внутренней облицовки – плитки для внутренней облицовки стен (применяют в помещениях санузлов, кухонь, бань, прачечных, станций метро и т.п.); плитки для полов. Величина основного, помимо размеров и внешнего вида, нормируемого показателя для керамических плиток – водопоглощения – имеет значение при выборе материала для облицовки помещений с влажным режимом и плиток для полов. При обычных условиях эксплуатации (внутри помещений) этот параметр не оказывает заметного влияния на потребительские свойства керамической плитки. Совершенно иная ситуация складывается при использовании плитки вне помещения: морозостойкость керамических изделий напрямую зависит от водопоглощения. Считается, что плитка с водопоглощением менее 3 % пригодна для применения на улице (крыльцо, балкон и т.п.) или в неотапливаемых помещениях. Керамические плитки для улучшения внешнего вида и создания дополнительной защиты покрывают глазурью .

Керамический гранит принадлежит к тому же классу отделочных материалов, что и керамическая плитка, но отличается от нее повышенными механическими характеристиками (прочностью, твердостью и износостойкостью), а также текстурой, имитирующей природный камень. Этот комплекс свойств достигается в результате применения смеси глин и минеральных добавок, сходной по составу с фарфоровой массой. Плитки, отформованные из этой смеси под высоким (до 50 МПа) давлением, подвергаются высокотемпературному обжигу (более 1200 °С), что приводит к спеканию массы и обеспечивает получение чрезвычайно твердого и плотного черепка, практически лишенного пор и пустот. Это позволяет обходиться без нанесения на поверхность плитки защитного слоя глазури.

Керамические плитки и керамогранит производятся размеров: от 15´15 до 40´40 и 30´60 см. Толщина облицовочных плиток обычно 5; 6 мм; плиток для полов и керамогранита – 8,5; 12; 15 мм.

Керамические материалы и изделия специального назначения. Выпускают кирпич и камни керамические для кладки и футеровки промышленных дымовых труб и печей; камни трапецеидальной формы для устройства подземных коллекторов; дорожный клинкерный кирпич для мощения улиц и дорог, полов, облицовки набережных и т.п.; глиняную черепицу – старейший вид кровельных материалов; керамические трубы: канализационные (с плотным черепком) и дренажные (с пористым черепком); теплоизоляционные керамические изделия – ячеистая керамика, керамзит; огнеупорные материалы (изготавливают в виде кирпича, блоков, плит из различных сырьевых компонентов по технологии, близкой к керамической).

В узком смысле слово керамика обозначает глину , прошедшую обжиг .

Самая ранняя керамика использовалась как посуда из глины или из смесей её с другими материалами. В настоящее время керамика применяется как материал в промышленности (машиностроение, приборостроение, авиационная промышленность и др.), строительстве, искусстве, широко используется в медицине, науке. В XX столетии были созданы новые керамические материалы для использования в полупроводниковой индустрии и др. областях.

Энциклопедичный YouTube

    1 / 2

    ✪ ТЁПЛАЯ КЕРАМИКА ДЛЯ СТРОИТЕЛЬСТВА ДОМА

    ✪ Керамика за 120 Евро? Для чего она нужна?

Субтитры

Виды керамики

В зависимости от строения различают тонкую керамику (черепок стекловидный или мелкозернистый) и грубую (черепок крупнозернистый). Основные виды тонкой керамики - фарфор , полуфарфор, каменная керамика , фаянс , майолика . Основной вид грубой керамики - гончарная керамика . Кроме того, различают керамику карбидную (карбид вольфрама , карбид кремния), алюмооксидную , циркониевую (на основе ZrO 2), нитридную (на основе AlN) и пр.

Гончарная керамика имеет черепок красно-коричневого цвета (используются красножгущиеся глины), большой пористости, водопоглощение до 18 %. Изделия могут покрываться бесцветными глазурями, расписываются цветными глиняными красками - ангобами .

История

Керамика известна с глубокой древности и является, возможно, первым созданным человеком искусственным материалом. Считалось, что возникновение керамики напрямую связано с переходом человека к оседлому образу жизни, поэтому оно произошло намного позднее, чем корзины . Ещё недавно первые известные нам образцы керамики относились к эпохе верхнего палеолита (граветтская культура) . Древнейший предмет из обожжённой глины датируется 29-25 тысячелетиями до нашей эры. Это вестоницкая Венера , хранящаяся в Моравском музее в Брно .

Найденные в 1993 году горшки из пещеры Сяньжэньдон (англ. ) в провинции Цзянси на юго-востоке КНР были слеплены 20-19 тыс. лет назад . Черепки от остроконечного сосуда, найденные в пещере Юйчаньянь (англ. ) в провинции Хунань на юго-востоке Китая, датируются возрастом 18,3-17,5 тыс. лет назад .

Древнейшая керамическая посуда (12 тыс. л. н.) в России обнаружена в Забайкалье (на археологических памятниках усть-каренгской культуры ) и на Дальнем Востоке (громатухинская, осиповская, селемджинская культуры; см. Сибирский неолит).

Керамика с толстым слоем растительного воска и жирного осадка с ливийских местонахождений в Сахаре (Юан Афуда (Uan Afuda ) и Такартори (Takarkori) датируется периодом 8200-6400 лет до н. э.

Первоначально керамика формовалась вручную. Изобретение гончарного круга в третьем тысячелетии до нашей эры (поздний энеолит - ранний бронзовый век) позволило значительно ускорить и упростить процесс формовки изделия. В доколумбовых культурах Америки индейская керамика изготавливалась без гончарного круга вплоть до прихода европейцев.

Отдельные виды керамики формировались постепенно по мере совершенствования производственных процессов, в зависимости от свойств сырья и получаемых условий обработки.

Древнейшие виды керамики - это разнообразные сосуды, а также пряслица , ткацкие грузики и другие предметы. Эта бытовая керамика разными способами облагораживалась - наносился рельеф штамповкой, прочерчиванием, налепными элементами. Сосуды получали разную окраску в зависимости от способа обжига. Их могли лощить, окрашивать или разрисовывать орнаментом, покрывать ангобом, глянцеватым слоем (греческая керамика и римские Terra sigillata ), цветной глазурью («Гафнеркерамика» Ренессанса).

К концу XVI века в Европе появилась майолика (в зависимости от происхождения, также часто называется фаянсом). Обладая пористым черепком из содержащей железо и известь, но при этом белой фаянсовой массы, она была покрыта двумя глазурями: непрозрачной, с высоким содержанием олова, и прозрачной блестящей свинцовой глазурью.

Каменная керамика также изготовлялась Веджвудом в Англии. Тонкий фаянс как особый сорт керамики с белым пористым черепком, покрытым белой же глазурью, появился в Англии в первой половине XVIII века. Фаянс в зависимости от крепости черепка делится на мягкий тонкий фаянс с высоким содержанием извести, средний - с более низким её содержанием и твёрдый - совсем без извести. Этот последний по составу и крепости черепка часто напоминает каменную керамику или фарфор .

Изготовление гончарных форм с использованием и без использования гончарного круга

История появления керамики на Руси

Археологические находки во многих древнерусских городах свидетельствуют о широком развитии на Руси гончарного ремесла. В Древней Руси применяли большей частью двухъярусные (нижний, топочный ярус зарывали в землю) гончарные горны, но были и одноярусные.

Монголо-татарское нашествие повлияло на развитие древнерусской культуры. История одной из её ветвей - керамики, сместилась из южных регионов в северные и западные пограничные города, в московские земли, поэтому не случайно возрождение изразцового искусства в Древней Руси было уничтожено множеством произведений русских гончаров IX-XII веков. Например, исчезли двуручные корчаги-амфоры, вертикальные светильники, искусство перегородчатой эмали, глазурь (самая простая - жёлтая, уцелела только в Новгороде), более простым стал орнамент.

Отдельное направление русской, а затем и современной российской керамики, составляет гжель (по имени города). Эти изделия исполняются в бело-синем стиле.

Прозрачная керамика

Исходные керамические материалы непрозрачны из-за особенностей их структуры. Однако спекание частиц нанометровых размеров позволило создать прозрачные керамические материалы, обладающие свойствами (диапазоном рабочих длин волн излучения, дисперсией, показателем преломления), лежащими за пределами стандартного диапазона значений для оптических стёкол .

Нанокерамика

Технология производства керамических изделий

Технологическая схема производства керамической плитки включает следующие основные фазы:

  1. Приготовление шликера ;
  2. Формовка изделия;
  3. Сушка;
  4. Приготовление глазури и глазуровка (эмалировка);

Сырьё для керамических масс подразделяется на пластичное (глины и каолины) и непластичное. Добавки шамота и кварца уменьшают усадку изделий и вероятность растрескивания на стадии формования. В качестве стеклообразователей используют свинцовый сурик , буру .

Приготовление шликера

Приготовление шликера идёт в три фазы:

  1. Первая фаза: помол полевого шпата и песка (помол ведётся от 10 до 12 часов);
  2. В первую фазу добавляется глина;
  3. Во вторую фазу добавляется каолин . Готовый шликер сливается в ёмкости и выдерживается.

Транспортировка из сырьевого склада производится при помощи погрузчика в приёмные бункера. Откуда по конвейеру отправляется либо в шаровую мельницу (для помола), либо в турборастворители (для роспуска глины и каолина)

Участок по приготовлению глазури

Глазури - глянцевидные сплавы, расплавляющиеся на керамическом черепке слоем толщиной 0,12 - 0,40 мм. Глазурь наносится, чтобы покрыть черепок изделия плотным и гладким слоем, а также для придания изделию с плотным черепком повышенной прочности и привлекательного внешнего вида, для гарантии диэлектрических свойств и защиты декора от механических и химических воздействий.

В состав глазури входит тонко измельчённый циркон , мел , белила . В одну из определяемых технологом ёмкостей загружается готовая глазурь. Её пропускают несколько раз через вибросита и магнитноуловители для извлечения металлических примесей, наличие которых в глазури может повлечь за собой образование дефектов в ходе производства. В состав добавляется клей, и глазурь отправляется на линию.

Формование

Перед формовкой шликер загружается в одну из ёмкостей. Три ёмкости используются поочерёдно (меняясь примерно раз в сутки) для определённого стенда. Форму предварительно очищают от остатков шликера после предыдущей формовки, обрабатывают шликерной водой и просушивают.

Шликер заливают в просушенные формы. Формы рассчитаны на 80 заливок. При формовании используется наливной способ. Форма впитывает в себя часть воды, и объём шликера уменьшается. В форму доливают шликер для поддержания требуемого объема.

После затвердевания изделия просушиваются, производится первичная отбраковка изделий (трещины, деформации).

Ручная обработка изделий

После формования изделия поступают в цех ручной обработки.

После нанесения глазури изделие отправляется на обжиг в печь. Печь укомплектована модулем предварительной сушки, камерами обеспыливания и обдува. Термическая обработка ведётся при температуре 1230 градусов, длина печи составляет порядка 89 метров. Цикл от погрузки до разгрузки вагонетки составляет около полутора суток. Обжиг изделий в печи проходит в продолжение суток.

После обжига проводят сортировку: разделение на группы подобных изделий, выявление дефектов. Если дефекты устранимы, то они отправляются на доработку и удаляются вручную на участке реставрации. В противном случае изделие считается бракованным.

) и их смесей с минеральными добавками, изготовляемые под воздействием высокой температуры с последующим охлаждением.

В узком смысле слово керамика обозначает глину , прошедшую обжиг . Однако современное использование этого термина расширяет его значение до включения всех неорганических неметаллических материалов. Керамические материалы могут иметь прозрачную или частично прозрачную структуру, могут происходить из стекла (см. ситаллы). Самая ранняя керамика использовалась как посуда из глины или из смесей её с другими материалами. В настоящее время керамика применяется как индустриальный материал (машиностроение, приборостроение, авиационной промышленности и др.), как строительный материал, художественный, как материал широко используемый в медицине, науке. В 20-ом столетии новые керамические материалы были созданы для использования в полупроводниковой индустрии и др. областях

Слово «керамический» происходит также от индоевропейского Керри , означая высокую температуру. Откуда «Керамический» может использоваться как прилагательное, описывающее материал, продукт или процесс; или как только существительное во множественном числе «керамика».

История

Исторически керамические изделия были твёрдыми, пористыми и хрупкими. Изучение керамики приводит к разработке все новых и новых методов для решения данных проблем, уделяя особое внимание сильным сторонам материалов, а также и необычному их использованию.

Керамика известна с глубокой древности и является, возможно, первым созданным человеком материалом. Время появления керамики относят к эпохе мезолит и неолита. Различными видами керамики являются терракота , майолика , фаянс , каменная масса, фарфор , ситаллы .

Исходя из происхождения слова керамика понимаются такие изделия, для которых глина (при случае каолин), смешанная с полевым шпатом, кварцем или известью, служит главным сырьем. Эти исходные вещества перемешиваются и перерабатываются в массу, которая либо от руки, либо на поворотном круге формуется и затем обжигается.

Отдельные виды керамики формировались постепенно по мере совершенствования производственных процессов, различаясь в зависимости от образовательных свойств черепка и калильного жара. Большинство из них удерживается и по сей день. Древнейший вид - это обыкновенный горшечный товар с землистым, окрашенным и пористым черепком. Это типичная бытовая керамика или изделия, которые разными способами облагораживались - штампованием и гравировкой (например, Bucchero nero), тонким облицовочным слоем (греческая керамика и римские Terra - sigillata), цветной глазурью («Гафнеркерамика» Ренессанса). Первоначально керамика формовалась от руки. Изобретение гончарного круга в третьем тысячелетии до нашей эры, было большим прогрессом, что позволило изготовлять посуду с более тонкими стенками.

К концу XVI века керамика переходит в Европу майолика . Обладая пористым черепком из содержащей железо и известь, но при этом белой фаянсовой массы или изразцовой глины, она покрыта двумя глазурями: непрозрачной, с содержанием олова, и прозрачной блестящей свинцовой глазурью. Майолика родом из заальпийских стран называется фаянсом. Декор писали на майолике по сырой глазури, прежде чем обжечь изделие при температуре порядка 1000 °C. Краски для росписи брались того же химического состава, что и глазурь , однако их существенной частью были окислы металлов, которые выдерживали большую температуру (так называемые огнеупорные краски - синяя, зеленая, желтая и фиолетовая). Начиная с XVIII века, стали применять так называемым муфельные краски, которые наносились на уже обожженную глазурь. С их помощью особенно на фарфоре, достигают высоких результатов.

В XVI веке в Германии распространяется производство каменной посуды. Белый (например, в Зигбурге) или окрашенный (например, в Ререне) весьма плотный черепок состоит из глины, смешанной с полевым шпатом и другими веществами. Обжигаясь при температуре 1200-1280 °С, каменная посуда очень тверда и практически непориста. В Голландии, по образцу Китайской керамики, ее стали производить красной, и ту же особенность обнаруживает каменная посуда Бётгера.

Каменная посуда также изготовлялась Веджвудом в Англии. Тонкий фаянс как особый сорт керамики рождается в Англии в первой половине XVIII века с белым пористым черепком, покрытым белой же глазурью. Он в зависимости от крепости черепка делится на мягкий тонкий фаянс с высоким содержанием извести, средний - с более низким ее содержанием и твердый - совсем без извести. Этот последний по составу и крепости черепка часто напоминает каменную посуду или фарфор.

В строительстве широко применяется цемент - один из видов керамики, сырьем для которого служат глина и известняк, смешанный с водой.

История появления керамики на Руси

Керамика в России

‎Керамика известна с глубокой древности и является, возможно, первым созданным человеком материалом. Россия в области керамики достойно занимает ведущее место в мире, несмотря на то, что в международной литературе вопрос о возникновении фарфорового и керамического производства часто умаляется. На примере появления чёрной керамики археологически доказано, что уже в 3-ем тысячелетии до н. э. чёрная лощённая керамика использовалась в ритуальных и обрядовых целях. Значительный ущерб развитию керамики в России нанесло только одно монголо-татарское нашествие, которое много уничтожило достижений русских гончаров IX-XII веков. Например, исчезли двуручные корчаги-амфоры, вертикальные светильники, более простым стал орнамент, искусство перегородчатой эмали, глазурь (самая простая - жёлтая, уцелела только в Новгороде).

Лишь в XV веке прдолжалось развитие керамики на Руси. В России и в настоящее время, особенно в сельской местности, каждый керамический сосуд незаменим. Пища в керамических горшках самая ароматная и долго хранящаяся.

Изготовление керамической посуды на гончарном круге представляло и представляет особый интерес. Так называемые квасники (сосуды для кислых щей, браги, пива, дрожжевых или фруктовых квасов) появились в Москве в ХIX веке.

Прозрачная керамика

Исторически керамические материалы непрозрачны из-за особенностей их структуры. Однако спекание частиц нанометровых размеров позволило создать прозрачные керамические материалы, обладающие свойствами (диапазоном рабочих длин волн излучения, дисперсией, показателем преломления), лежащими за пределами стандартного диапазона значений для оптических стёкол .

См. также

  • Обварная керамика

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Керамические материалы" в других словарях:

    Неметаллические материалы из тугоплавких неорганических соединений, получаемые спеканием, плазмо химическим и другими методами. К. м. обладают высокой температуроустойчивостью, жаропрочностью, твёрдостью, электроизоляционными и другими ценными… … Энциклопедия техники

    керамические материалы Энциклопедия «Авиация»

    керамические материалы - керамические материалы — неметаллические материалы из тугоплавких неорганических соединений, получаемые спеканием, плазмо химическим и другими методами. К. м. обладают высокой температуроустойчивостью, жаропрочностью, твёрдостью,… … Энциклопедия «Авиация»

    Основная статья: Оптические материалы Волновод на базе прозрачной керамики Прозрачные керамические материалы материалы, прозрачные для электромагнитных … Википедия

    Абразивные керамические материалы - (абразивы) – вещества повы­шенной твердости, применяемые в массивном или измельченном со­стоянии для механической обработки (шлифования, резания, истирания, заточки, полирования и т.д.) других материалов. Естественные аб­разивные материалы –… …

    Сверхтвердые керамические материалы - – композиционные керамичес­кие материалы, получаемые введением различных легирующих добавок и наполнителей в исходный нитрид бора. Структура таких материалов образо­вана прочно связанными мельчайшими кристаллитами и, следовательно, они являются… … Энциклопедия терминов, определений и пояснений строительных материалов

    Керамические плитки и плиты - – тонкостенные изделия, изготовленные из керамической массы и/или других неорганических материалов. Примечание 1. Керамические плитки и плиты применяют главным образом для настилки полов и облицовки стен. Как правило, их формуют при… … Энциклопедия терминов, определений и пояснений строительных материалов

    Материалы строительные керамические - – получают в процессе технологической переработки минерального сырья (в основном глинистого), способного при затворении водой образовывать пластичное тесто, которое в высушенном состоянии обладает небольшой прочностью, а после обжига приобретает… … Энциклопедия терминов, определений и пояснений строительных материалов

    Керамические изделия для облицовки - – выпускают глазурованными и неглазурованными. К ним относится лицевой кирпич и ковровые облицовочные плитки. Кирпич и камни лицевые керамические имеют марки по прочности 75,100,125,150; водопоглощение 6…14 %. [Словарь строительных материалов и… … Энциклопедия терминов, определений и пояснений строительных материалов

Первые керамические изделия появились задолго до того, как люди научились выплавлять металл. Древние горшки и кувшины, которые археологи находят по сей день, являются тому подтверждением. Стоит заметить, что керамический материал имеет уникальные свойства, которые делают его в некоторых сферах просто незаменимым. Давайте рассмотрим с вами особенности керамики, поговорим о её производстве и характеристиках.

Общие сведения

Получают керамические изделия путем спекания глины и смесей с органическими добавками. Иногда используют оксиды неорганических соединений. Первые такие изделия появились еще 5 000 лет назад. За это время технология производства существенно усовершенствовалась, и сегодня нам доступны высокопрочные керамические изделия. Они используются в строительстве для облицовки фасадов, полов, возведения стен и т. д.

Есть керамические изделия с плотным и пористым черепком. Ключевое отличие между ними заключается в том, что плотный черепок является водонепроницаемым. Это фарфоровые изделия, плитки для полов и т. п. Пористый черепок - черепица, дренажные трубы и другое.

История возникновения

Слово "керамика" в переводе с греческого означает "глина". Естественно, для изготовления любого изделия использовалась своего рода смесь. В неё добавлялись необходимые материалы в зависимости от того, что нужно было получить в конечном итоге. Первое время вручную, а несколько позже и на специальном станке изделию из глины придавалась специальная форма. В дальнейшем керамические изделия обжигаются в печах при высокой температуре.

Во многих странах использовались собственные Это касается гончарных масс, росписи и глазурования. Первым государством, которое добилось существенного развития данной отрасли, считается Египет. Именно производство керамики там было налажено в первую очередь. Изделия были из грубой и плохо перемешанной глины, но в дальнейшем технология усовершенствовалась. Сегодня находят кирпичи из желтой глины, которые якобы использовались при строительстве пирамид Мемфиса.

Появление фарфора

Долгое время в Китае использовали такой материал, как нефрит. Он был красивым, но довольно хрупким и сложным в обработке. Спустя долгие годы поисков было найдено решение. Фарфор более прост в изготовлении. Тем не менее и тут были свои нюансы. К примеру, слюду и цваоку, которые находили в "фарфоровых камнях", перетирали в мелкий порошок и хранили более 10 лет. Делалось это для того, чтобы материал стал максимально пластичным. Первыми фарфоровыми изделиями в Китае были высокие и вытянутые сосуды. Они имели полированную поверхность и голубой или темно-зеленый цвет. Последние ценились больше всего.

Сегодня считается, что именно Китай является государством, где фарфор был распространен наиболее широко. Это действительно так, хотя он был популярен и в Европе, но появился там позже, и его производство развивалось дольше.

Основные виды керамики

В настоящее время изделия из глины имеют широкую классификацию. Так, гончарные предметы можно поделить на две основных группы:

  • неглазированная керамика (терракота и гончарная);
  • глазированная (майолика, шамот).

Терракота - с итальянского "обожженная земля". Изделия изготавливаются из цветной глины и имеют пористую структуру. Из терракоты делают вазы, посуду, а также игрушки и черепицу.

Гончарная же керамика более сложна в обработке. Для того чтобы сделать её водонепроницаемой, необходимо лощение. Дальше изделие подвергается морению. Для этого его оставляют в горячей печи в дыму до полного остывания. Сегодня многие виды керамики, в частности гончарная, крайне популярны. Используется она в быту для хранения молока, сыпучих материалов или как декор.

Что же касается второго вида - глазированной керамики, то тут наибольшей популярностью пользуются фарфор и фаянс. Первый более дорогостоящий и трудоемкий в производстве, второй - практичный и дешевый. Различаются они между собой тем, что фарфоровые изделия содержат меньше глины и больше специальных добавок. Кроме того, фарфор просвечивается на свету, в отличие от фаянса.

Об огнеупорах

Изделия из смесей глины являются огнеупорными. В зависимости от назначения они могут выдерживать температуру от 1 300 до 2 000 градусов по Цельсию, и даже выше. Используется специальная печь для обжига керамики. в наибольшем количестве применяются в металлургическом процессе. Там они используются для конструирования доменных печей и агрегатов.

Вполне логично говорить о том, что с повышением температуры прочность огнеупора не теряется, а, наоборот, повышается. Достигается это за счет наличия в составе тугоплавких оксидов, силикатов и боридов. Они используются практически везде, где имеют место высокотемпературные процессы. Очень часто они встречаются формованными, то есть в виде конкретного изделия, допустим, кирпича. Реже необходимо применение неформованных огнеупоров в виде порошка.

Керамика в строительстве

Это же касается и керамической плитки, которая, несмотря на появление полимеров, не сдает позиции. Она все так же используется для оборудования помещений с повышенной влажностью и температурой. Среди облицовочных материалов первое место занимает керамзит.

За последние несколько лет на 4 % увеличилось производство пустотелого керамического блока и кирпича. Для их изготовления необходимы минимальные изменения на кирпичных заводах и фабриках, при этом затраты окупаются за первый год продаж. За рубежом пустотелая керамика уже давно заняла лидирующую позицию и продается гораздо лучше обычного кирпича.

Специальные керамические материалы

К таким изделиям можно отнести санитарно-технические и канализационные трубы. Первые разделяются на три большие группы:

  • из твердого фаянса (пористый черепок);
  • санитарный фарфор (спекшийся черепок);
  • полуфарфор (полуспекшийся черепок).

Основные требования, выдвигаемые к санитарно-техническим изделиям - это устойчивость к механическим повреждениям, теплостойкость. Рецептура должна соблюдаться в строгом порядке, это же касается и технологии. Используется только профессиональная и высококачественное сырье. К санитарно-техническим изделиям стоит отнести раковины, унитазы, ванны, радиаторы и т. п. Верный способ проверки качества изделия - легкое постукивание по корпусу. Звук должен быть чистым и без дребезжания. Это указывает на обжиг при правильной температуре и отсутствия трещин.

Что касается канализационных труб, то они должны иметь плотный спекшийся черепок. выпускаются диаметром 150-600 мм. Обычно покрываются глазурью как изнутри, так и снаружи. Для таких изделий характерна высокая устойчивость к агрессивной среде и блуждающему электрическому току. Имеют умеренную стоимость, что делает их более доступными.

Физико-химические свойства керамики

Как уже было отмечено выше, все изделия можно разделить на две обширные группы: плотные и пористые. Плотные имеют коэффициент водопоглощения менее 5 %, пористые - 5 % и более. К последней группе можно отнести следующие изделия: глиняный кирпич (пористый и пустотелый), пустотные облицовочную плитку, черепицу для кровли. Плотные керамические изделия - дорожный кирпич и напольная плитка. В санитарно-технической отрасли встречается как пористая, так и плотная керамика.

Говоря о физико-химических свойствах, нельзя не отметить ключевой недостаток керамики. Заключается он в повышенной хрупкости по сравнению с другими материалами. Тем не менее высокая доступность и универсальность делают данный материал одним из самых востребованных во многих отраслях промышленности и даже в повседневной жизни человека. Современные технологии позволяют получать гладкую поверхность сразу после обжига. Если требуется достигнуть определенного цвета, то добавляют окислы железа или кобальта.

Особенности микроструктуры

При нагревании керамика постепенно переходит в жидкое состояние. Оно отличается большим количеством простых и сложных соединений. При остывании происходит кристаллизация. Проявляется она в выпадении чистых кристаллов, которые увеличиваются в размерах. Когда масса твердеет, то в структуре образуется микроконгломерат. В нем зерна муллита сцементированы затвердевшей массой. Стоит обратить ваше внимание, что атомы кислорода образуют своего рода матрицу. В ней присутствуют маленькие атомы металлов, которые замещаются в пустотах между ними. Следовательно, в микроструктуре преобладают ионные и несколько меньше ковалентные связи. Химическая стабильность и устойчивость достигаются за счет наличия крепких и прочных химических соединений.

Как было отмечено выше, применение керамических материалов ограничено. Обусловлено это тем, что кристаллы неидеальны. Кристаллические решетки имеют множество дефектов: поры атомного размера, деформации и т. п. Все это существенно ухудшает прочность. Однако есть тут и свои нюансы. К примеру, при соблюдении технологии во время изготовления того или иного вида керамики вполне возможно добиться хороших результатов по прочности. Для этого крайне важно соблюдать температурный режим и длительность обжига изделия.

Характеристика и свойства глины

Глина - осадочная горная порода, которая независимо от состава и структуры при смешивании с водой образует пластичный материал. После обжига - камневидное тело. Обычно смесь плотная, в большей степени состоит из алюмосиликатов. Нередко в глинах находят и такие породы, как кварц, шпат, а также гидроксиды и карбонаты кальция, магния и соединения титана.

Каолины - наиболее чистые глины, которые известны на сегодняшний день. Практически полностью состоят из каолинита. После обжига приобретают белый цвет. Необходимая для обработки пластичность достигается за счет наличия в структуре мелких зерен глинистого вещества (0,005 мм). Естественно, чем больше в составе такого вещества, тем пластичность выше, и наоборот.

К основным керамическим свойствам глин стоит отнести:

  • пластичность - деформирование без нарушения целостности;
  • связность;
  • воздушная и огневая усадка;
  • огнеупорность.

Сегодня используются различные отощающие и обогащающие добавки, которые позволяют изменять свойства материала в ту или иную сторону. Это приводит к тому, что керамические изделия становятся еще более востребованными и доступными.

Технологическая схема производства

Характеристика керамических материалов говорит о возможности использования глин в различных отраслях промышленности. Это привело к тому, что появился большой спрос, а следовательно, выросло предложение. Заводы по производству в большинстве случаев работают по одной и той же схеме:

  • добыча сырья;
  • подготовка;
  • формирование и сушка;
  • обжиг и выпуск продукта.

Для минимизации затрат обычно фабрики возводят в непосредственной близости от месторождения глины. Добыча осуществляется открытым способом, то есть экскаватором. На следующем этапе выполняется подготовка массы. Сырье обогащается, дробится и перемешивается до однородной массы. Формирование будущего керамического изделия осуществляется мокрым и сухим способами. В первом случае массу увлажняют до 25 %, а во втором - не более 12 %.

Раньше часто использовалась естественная сушка. Однако результат зависел по большей части от погоды. Следовательно, в дождь или холод завод стоит. Поэтому используют специальные сушилки (газовые). Наиболее ответственным этапом является обжиг. Крайне важно соблюдать технологию, которая довольно сложна. Многое зависит и от охлаждения керамики. Не допускается резкий перепад температур, который может привести к искривлению плоскости. Только после этого можно продавать керамические материалы. Технология производства, как вы видите, непростая, состоит из нескольких этапов. Каждый из них должен соблюдаться. Если этого не происходит, то на полках магазина мы можем встретить брак.

Немного о недостатках керамики

Как уже было сказано, состав керамических материалов неидеален. В частности, это сказывается на прочности изделия из глины. Любое механическое повреждение может проявиться как скол, трещина и т. п. Это и является ключевым недостатком. Но есть и другие факторы, которые сдерживают повсеместное распространение рассматриваемого нами материала. Один из них - высокая стоимость. К примеру, черепица керамическая для кровли загородного дома - прекрасное с эстетической точки зрения решения, но обойдется такое удовольствие очень дорого.

При этом её внешний вид будет сохраняться не более 5 лет при надлежащем уходе. В дальнейшем происходит выцветание, появление мха на поверхности и т. п. Наряду с этим хрупкость и ломкость приводят к тому, что любое механическое повреждение может повлечь за собой протекание кровли, а это уже мало кому понравится. Конечно, современный керамический материал смотрится весьма эффектно, что достигается за счет широкой фактуры цветов и высокого качества изготовления. Но стоит он по-прежнему дорого, что зачастую и заставляет задуматься о целесообразности такого выбора.

Подведем итоги

Мы рассмотрели основные свойства керамических материалов. Исходя из всего выше сказанного, можно заключить, что такие изделия обладают некоторой уникальностью. Заключается она в том, что при отсутствии механических повреждений они прослужат очень и очень долго. Кроме того, керамический материал для литья жидкого металла на заводах также является незаменимым, ведь выдерживает высокие температуры.

Что же касается повседневной жизни, то тут керамика очень кстати. Специальная посуда для приготовления еды в духовке, хоть и изменила свой внешний вид за многие годы, но делается все так же из этого материала. Фарфор, несмотря на свою большую стоимость, обладает изящным видом и просто радует глаз. Это касается и фаянса, который при должном исполнении сложно отличить от фарфора.

В любом случае необходимо использовать керамический материал. В первую очередь это обусловлено большими запасами природной глины. Её действительно много, и каждый год разрабатываются все новые и новые карьеры по добыче этого природного ресурса. Второй немаловажный фактор - экологическая чистота. Раньше у людей вообще не было возможности использовать какие-либо вредные добавки для улучшения прочностных характеристик изделия. Сегодня ситуация изменилась, пусть и не слишком критично. Керамическая плитка, в отличие от синтетических материалов, не вредит здоровью. Это касается и посуды из керамики, которая, по сравнению с пластиком, особенно если последний нагрет, не наносит вреда вообще.