Гармоническим анализом звука называют установление числа тонов. Анализ звука. Дискретные методы гармонического анализа

На практике чаще приходится решать обратную по отношению к рассмотренной выше задачу – разложение некоторого сигнала на составляющие его гармонические колебания. В курсе математического анализа подобная задача традиционно решается разложением заданной функции в ряд Фурье, т. е. в ряд вида:

где i =1,2,3….

Практическое разложение в ряд Фурье, называемое гармоническим анализом , состоит в нахождении величин a 1 ,a 2 ,…,a i , b 1 ,b 2 ,…,b i , называемых коэффициентами Фурье. По значению этих коэффициентов можно судить о доле в исследуемой функции гармонических колебаний соответствующей частоты, кратной ω . Частоту ω называют основной или несущей частотой, а частоты 2ω, 3ω,… i·ω – соответственно 2-й гармоникой, 3-й гармоникой, i -й гармоникой. Применение методов математического анализа позволяет разложить в ряд Фурье большинство функций, описывающих реальные физические процессы. Применение этого мощного математического аппарата возможно при условии аналитического описания исследуемой функции, что является самостоятельной и, часто, не простой задачей.

Задача гармонического анализа может формулироваться как поиск в реальном сигнале факта присутствия той или иной частоты. Например, существуют методы определения частоты вращения ротора турбокомпрессора, основанные на анализе звука, сопровождающего его работу. Характерный свист, слышимый при работе двигателя с турбонаддувом, вызван колебаниями воздуха из-за движения лопаток рабочего колеса компрессора. Частота этого звука и частота вращения рабочего колеса пропорциональны. При использовании аналоговой измерительной аппаратуры в этих случаях поступают примерно так: одновременно с воспроизведением записанного сигнала с помощью генератора создают колебания заведомо известной частоты, перебирая их в исследуемом диапазоне до возникновения резонанса. Частота генератора, соответствующая резонансу, будет равна частоте исследуемого сигнала.

Внедрение цифровой техники в практику измерений позволяет решать подобные задачи с применением расчетных методов. Прежде чем рассмотреть основные идеи, заложенные в этих расчетах, покажем отличительные особенности цифрового представления сигнала.

Дискретные методы гармонического анализа

Рис. 18. Квантование по амплитуде и времени

а – исходный сигнал; б – результат квантования;

в , г – сохраненные данные

При использовании цифровой аппаратуры реальный непрерывный сигнал (рис. 18, а ) представляется набором точек, точнее значениями их координат. Для этого исходный сигнал, идущий, например, с микрофона или акселерометра, квантуется по времени и по амплитуде (рис. 18, б ). Иначе говоря, измерение и запоминание величины сигнала происходит дискретно через некоторый интервал времени Δt , а само значение величины в момент измерения округляется до возможной ближайшей величины. Время Δt называют временем дискретизации , которое связано с частотой дискретизации обратной зависимостью.

Количество интервалов, на которое разбита двойная амплитуда максимально допустимого сигнала, определяется разрядностью аппаратуры. Очевидно, что для цифровой электроники, оперирующей в конечном итоге булевыми величинами («единица» или «ноль»), все возможные значения разрядности будут определяться как 2 n . Когда мы говорим, что звуковая карта нашего компьютера 16-разрядная, это означает, что весь допустимый интервал входной величины напряжения (ось ординат на рис. 11) будет разбит на 2 16 = 65536 равных интервалов.

Как видно из рисунка, при цифровом способе измерения и хранения данных, часть исходной информации будет потеряна. Для повышения точности измерений следует повышать разрядность и частоту дискретизации преобразующей техники.

Вернемся к поставленной задаче – определению в произвольном сигнале присутствия определенной частоты. Для большей наглядности используемых приемов, рассмотрим сигнал, являющийся суммой двух гармонических колебаний: q=sin 2t +sin 5t , заданных с дискретностью Δt=0,2 (рис. 19). В таблице рисунка приведены значения результирующей функции, которые будем далее рассматривать как пример некоторого произвольного сигнала.

Рис. 19. Исследуемый сигнал

Для проверки присутствия в исследуемом сигнале интересующей нас частоты умножим исходную функцию на зависимость изменения колебательной величины при проверяемой частоте. После чего сложим (численно проинтегрируем) полученную функцию. Умножать и суммировать сигналы будем на определенном интервале – периоде несущей (основной) частоты. При выборе значения основной частоты, надо учитывать, что проверить возможно только большую, по отношению к основной, в n раз частоту. Выберем в качестве основной частоты ω =1, которой соответствует период.

Начнем проверку сразу с «правильной» (присутствующей в сигнале) частотыy n =sin2x . На рис. 20 описанные выше действия представлены графически и численно. Следует обратить внимание, что результат умножения проходит преимущественно выше оси абсцисс, и поэтому сумма заметно больше нуля (15,704>0). Подобный результат был бы получен и при умножении исходного сигнала на q n =sin5t (пятая гармоника тоже присутствует в исследуемом сигнале). Причем результат подсчета суммы будет тем больше, чем больше амплитуда проверяемого сигнала в исследуемом.

Рис. 20. Проверка присутствия в исследуемом сигнале составляющей

q n = sin2t

Теперь выполним те же действия для не присутствующей в исследуемом сигнале частоты, например, для третьей гармоники (рис. 21).

Рис. 21. Проверка присутствия в исследуемом сигнале составляющей

q n =sin3t

В этом случае кривая результата умножения (рис. 21) проходит как в области положительных амплитуд, так и отрицательных. Численное интегрирование этой функции даст результат, близкий к нулю (=-0,006), что указывает на отсутствие этой частоты в исследуемом сигнале или, говоря другими словами, амплитуда исследуемой гармоники близка к нулю. Теоретически мы должны были получить ноль. Погрешность вызвана ограничениями дискретных методов из-за конечной величины разрядности и частоты дискретизации. Повторяя описанные выше действия нужное количество раз, можно выяснить наличие и уровень сигнала любой частоты, кратной несущей.

Не углубляясь в подробности можно сказать, что примерно такие действия выполняют в случае так называемого дискретного преобразования Фурье .

В рассмотренном примере для большей наглядности и простоты все сигналы имели одинаковый (нулевой) начальный фазовый сдвиг. Для учета возможных различных начальных фазовых углов описанные выше действия выполняют с комплексными числами.

Известно множество алгоритмов дискретного преобразования Фурье. Результат преобразования – спектр – часто представляют не линейчатым, а сплошным. На рис. 22 показаны оба варианта спектров для исследуемого в рассмотренном примере сигнала

Рис. 22. Варианты спектров

Действительно, если бы мы в рассмотренном выше примере выполнили проверку не только для частот строго кратных основной, но и в окрестностях кратных частот, то обнаружили бы, что метод показывает наличие эти гармонических колебаний с амплитудой больше нуля. Применение сплошного спектра при исследовании сигналов обосновано еще и тем, что выбор основной частоты в исследованиях носит во многом случайный характер.

При помощи наборов акустических резонаторов можно установить, какие тоны входят в состав данного звука и с какими амплитудами они присутствуют в данном звуке. Такое установление гармонического спектра сложного звука называется его гармоническим анализом. Раньше такой анализ действительно производился с помощью наборов резонаторов, в частности резонаторов Гельмгольца, представляющих собой полые шары разного размера, снабженные отростком, вставляющимся в ухо, и имеющие отверстие с противоположной стороны (рис. 43). Действие такого резонатора, как и действие резонансного ящика камертона, мы объясним ниже (§51). Для анализа звука существенно то, что всякий раз, когда в анализируемом звуке содержится тон с частотой резонатора, последний начинает громко звучать в этом тоне.

Рис. 43. Резонатор Гельмгольца

Такие способы анализа, однако, очень неточны и кропотливы. В настоящее время они вытеснены значительно более совершенными, точными и быстрыми электроакустическими способами. Суть их сводится к тому, что акустическое колебание сначала преобразуется в электрическое колебание с сохранением той же формы, и следовательно, имеющее такой же спектр (§ 17); затем уже это электрическое колебание анализируется электрическими методами.

Укажем один существенный результат гармонического анализа, касающийся звуков нашей речи. По тембру мы можем узнать голос человека. Но чем различаются звуковые колебания, когда один и тот же человек поет на одной и той же ноте различные гласные: а, и, о, у, э? Другими словами, чем различаются в этих случаях периодические колебания воздуха, вызываемые голосовым аппаратом при разных положениях губ и языка и изменениях формы полостей рта и горла? Очевидно, в спектрах гласных должны быть какие-то особенности, характерные для каждого гласного звука, сверх тех особенностей, которые создают тембр голоса данного человека. Гармонический анализ гласных подтверждает это предположение, а именно, гласные звуки характеризуются наличием в их спектрах областей обертонов с большой амплитудой, причем эти области лежат для каждой гласной всегда на одних и тех же частотах, независимо от высоты пропетого гласного звука. Эти области сильных обертонов называются формантами. Каждая гласная имеет две характерные для нее форманты. На рис. 44 показано положение формант гласных у, о, а, э, и.

Очевидно, если искусственным путем воспроизвести спектр того или иного звука, в частности спектр гласной, то наше ухо получит впечатление этого звука, хотя бы его «естественный источник» отсутствовал. Особенно легко удается осуществлять такой синтез звуков (и синтез гласных) с помощью электроакустических устройств. Электрические музыкальные инструменты позволяют очень просто изменять спектр звука, т. е. менять его тембр.

Текстовые задания ГИА

Задание №FF157A

Ареометр – прибор для измерения плотности жидкостей, принцип работы которого основан на законе Архимеда. Обычно представляет собой стеклянную трубку, нижняя часть которой при калибровке заполняется дробью для достижения необходимой массы (рис. 1). В верхней, узкой части находится шкала, которая проградуирована в значениях плотности раствора . Плотность раствора равняется отношению массы ареометра к объёму, на который он погружается в жидкость. Так как плотность жидкостей сильно зависит от температуры, измерения плотности должны проводиться при строго определённой температуре, для чего ареометр иногда снабжают термометром.




Используя текст и рисунки, выберите из предложенного перечня два верных утверждения. Укажите их номера.

  • 1) Согласно рис. 2 плотность жидкости во второй мензурке больше плотности жидкости в первой мензурке.

  • 2) Ареометр приспособлен для измерения плотности только тех жидкостей, плотность которых больше средней плотности ареометра.

  • 3) При нагревании жидкости глубина погружения в неё ареометра не изменяется.

  • 4) Глубина погружения ареометра в данную жидкость не зависит от количества дроби в нём.

  • 5) Выталкивающая сила, действующая на ареометр в жидкости (1), равна выталкивающей силе, действующей на ареометр в жидкости (2).
Задание №fad1e8

На рисунке показан профиль волны.

Длина и амплитуда волны равны соответственно


  • 1) 12 см и 9 см

  • 2) 18 см и 6 см

  • 3) 12 см и 18 см

  • 4) 18 см и 12 см

  • Анализ звука

Раньше анализ звука выполнялся с помощью резонаторов, представляющих собой полые шары разного размера, имеющих открытый отросток, вставляемый в ухо, и отверстие с противоположной стороны. Для анализа звука существенно, что всякий раз, когда в анализируемом звуке содержится тон, частота которого равна частоте резонатора, последний начинает громко звучать в этом тоне .

Такие способы анализа, однако, очень неточны и кропотливы. В настоящее время они вытеснены значительно более совершенными, точными и быстрыми электроакустическими методами. Суть их сводится к тому, что акустическое колебание сначала преобразуется в электрическое колебание с сохранением той же формы, а, следовательно, имеющее тот же спектр, а затем это колебание анализируется электрическими методами.

Один из существенных результатов гармонического анализа касается звуков нашей речи. По тембру мы можем узнать голос человека. Но чем различаются звуковые колебания, когда один и тот же человек поет на одной и той же ноте различные гласные? Другими словами, чем различаются в этих случаях периодические колебания воздуха, вызываемые голосовым аппаратом при разных положениях губ и языка и изменениях формы полости рта и глотки?

Очевидно, в спектрах гласных должны быть какие-то особенности, характерные для каждого гласного звука, сверх тех особенностей, которые создают тембр голоса данного человека. Гармонический анализ гласных подтверждает это предположение, а именно, гласные звуки характеризуются наличием в их спектрах областей обертонов с большой амплитудой, причем эти области лежат для каждой гласной всегда на одних и тех же частотах, независимо от высоты пропетого гласного звука.


    • Задание №03C14B
Чем обусловлены особенности различных гласных звуков?

Правильным является ответ

      • 1) только А

      • 2) только Б

      • 3) и А, и Б

      • 4) ни А, ни Б

    • Задание №27CDDB
Что понимают под гармоническим анализом звука?

      • 1) установление громкости звука

      • 2) установление частот и амплитуд тонов, входящих в состав сложного звука

      • 3) установление возможности пения на одной и той же ноте различных гласных звуков

      • 4) установление высоты сложного звука

    • Задание №C2AE03
Какое физическое явление лежит в основе анализа звука с помощью полых шаров?

      • 1) резонанс

      • 2) электрические колебания

      • 3) отражение звука от отростка шара

      • 4) превращение звуковых колебаний в электрические

  • Анализ звука
При помощи наборов акустических резонаторов можно установить, какие тоны входят в состав данного звука и каковы их амплитуды. Такое установление спектра сложного звука называется его гармоническим анализом.

Раньше анализ звука выполнялся с помощью резонаторов, представляющих собой полые шары разного размера, имеющих открытый отросток, вставляемый в ухо, и отверстие с противоположной стороны. Для анализа звука существенно, что всякий раз, когда в анализируемом звуке содержится тон, частота которого равна частоте резонатора, последний начинает громко звучать в этом тоне.

Такие способы анализа, однако, очень неточны и кропотливы. В настоящее время они вытеснены значительно более совершенными, точными и быстрыми электроакустическими методами. Суть их сводится к тому, что акустическое колебание сначала преобразуется в электрическое колебание с сохранением той же формы, а, следовательно, имеющее тот же спектр, а затем это колебание анализируется электрическими методами.

Один из существенных результатов гармонического анализа касается звуков нашей речи. По тембру мы можем узнать голос человека. Но чем различаются звуковые колебания, когда один и тот же человек поёт на одной и той же ноте различные гласные? Другими словами, чем различаются в этих случаях периодические колебания воздуха, вызываемые голосовым аппаратом при разных положениях губ и языка и изменениях формы полости рта и глотки? Очевидно, в спектрах гласных должны быть какие-то особенности, характерные для каждого гласного звука, сверх тех особенностей, которые создают тембр голоса данного человека. Гармонический анализ гласных подтверждает это предположение, а именно: гласные звуки характеризуются наличием в их спектрах областей обертонов с большой амплитудой, причём эти области лежат для каждой гласной всегда на одних и тех же частотах независимо от высоты пропетого гласного звука.


    • Задание №0B3BD1
Гармоническим анализом звука называют

А. установление числа тонов, входящих в состав сложного звука.

Б. установление частот и амплитуд тонов, входящих в состав сложного звука.

Правильный ответ


      • 1) только А

      • 2) только Б

      • 3) и А, и Б

      • 4) ни А, ни Б

    • Задание №439A8F
Можно ли, используя спектр звуковых колебаний, отличить один гласный звук от другого? Ответ поясните.

    • Задание №9DA26D
Какое физическое явление лежит в основе электроакустического метода анализа звука?

      • 1) преобразование электрических колебаний в звуковые

      • 2) разложение звуковых колебаний в спектр

      • 3) резонанс

      • 4) преобразование звуковых колебаний в электрические

  • Флотация

Одним из способов обогащения руды, основанным на явлении смачивания, является флотация. Сущность флотации состоит в следующем. Раздробленная в мелкий порошок руда взбалтывается в воде. Туда же добавляется небольшое количество вещества, обладающего способностью смачивать одну из подлежащих разделению частей, например крупицы полезного ископаемого, и не смачивать другую часть – крупицы пустой породы. Кроме того, добавляемое вещество не должно растворяться в воде. При этом вода не будет смачивать поверхность крупицы руды, покрытую слоем добавки. Обычно применяют какое-нибудь масло. В результате перемешивания крупицы полезного ископаемого обволакиваются тонкой пленкой масла, а крупицы пустой породы остаются свободными. В получившуюся смесь очень мелкими порциями вдувают воздух. Пузырьки воздуха, пришедшие в соприкосновение с крупицей полезной породы, покрытой слоем масла и потому не смачиваемой водой, прилипают к ней. Это происходит потому, что тонкая пленка воды между пузырьками воздуха и не смачиваемой ею поверхностью крупицы стремится уменьшить свою площадь, подобно капле воды на промасленной бумаге, и обнажает поверхность крупицы.


    • Задание №0CC91A
Что такое флотация?

      • 1) способ обогащения руды, в основе которого лежит явление плавания тел

      • 2) плавание тел в жидкости

      • 3) способ обогащения руды, в основе которого лежат явления смачивания и плавания

      • 4) способ получения полезных ископаемых

    • Задание №6F39A2
Почему крупицы полезной руды поднимаются вверх из смеси воды и руды?

      • 1) на крупицы действует выталкивающая сила, меньшая, чем сила тяжести, действующая на крупицы
на прилипшие к ним пузырьки действует выталкивающая сила, меньшая, чем сила тяжести, действующая на крупицы

      • 3) на крупицы и прилипшие к ним пузырьки действует выталкивающая сила, равная силе тяжести, действующая на крупицы

      • 4) на них действует сила поверхностного натяжения слоя воды между масляной пленкой и пузырьком воздуха

  • Флотация
Чистая руда почти никогда не встречается в природе. Почти всегда полезное ископаемое перемешано с «пустой», ненужной горной породой. Процесс отделения пустой породы от полезного ископаемого называют обогащением руды.

Одним из способов обогащения руды, основанным на явлении смачивания, является флотация. Сущность флотации состоит в следующем. Раздробленная в мелкий порошок руда взбалтывается в воде. Туда же добавляется небольшое количество вещества, обладающего способностью смачивать одну из подлежащих разделению частей, например крупицы полезного ископаемого, и не смачивать другую часть – крупицы пустой породы. Кроме того, добавляемое вещество не должно растворяться в воде. При этом вода не будет смачивать поверхность крупицы руды, покрытую слоем добавки. Обычно применяют какое-нибудь масло. В результате перемешивания крупицы полезного ископаемого обволакиваются тонкой пленкой масла, а крупицы пустой породы остаются свободными. В получившуюся смесь очень мелкими порциями вдувают воздух. Пузырьки воздуха, пришедшие в соприкосновение с крупицей полезной породы, покрытой слоем масла и потому не смачиваемой водой, прилипают к ней. Это происходит потому, что тонкая пленка воды между пузырьками воздуха и не смачиваемой ею поверхностью крупицы стремится уменьшить свою площадь, подобно капле воды на промасленной бумаге, и обнажает поверхность крупицы.

Крупицы полезной руды с пузырьками воздуха поднимаются вверх, а крупицы пустой породы опускаются вниз. Таким образом, происходит более или менее полное отделение пустой породы и получается концентрат, богатый полезной рудой.

Задание №866BE9

Можно ли, используя флотацию, сделать так, чтобы пустая порода всплывала вверх, а крупицы руды оседали на дно? Ответ поясните.


  • Охлаждающие смеси
Возьмём в руки кусок сахара и коснёмся им поверхности кипятка. Кипяток втянется в сахар и дойдёт до наших пальцев. Однако мы не почувствуем ожога, как почувствовали бы, если бы вместо сахара был кусок ваты. Это наблюдение показывает, что растворение сахара сопровождается охлаждением раствора. Если бы мы хотели сохранить температуру раствора неизменной, то должны были бы подводить к раствору энергию. Отсюда следует, что при растворении сахара внутренняя энергия системы сахар–вода увеличивается.

То же происходит при растворении большинства других кристаллических веществ. Во всех подобных случаях внутренняя энергия раствора больше, чем внутренняя энергия кристалла и растворителя при той же температуре, взятых в отдельности.

В примере с сахаром необходимое для его растворения количество теплоты отдаёт кипяток, охлаждение которого заметно даже по непосредственному ощущению.

Если растворение происходит в воде при комнатной температуре, то температура получившейся смеси в некоторых случаях может оказаться даже ниже 0 °С, хотя смесь и остаётся жидкой, поскольку температура застывания раствора может быть значительно ниже 0°С. Этот эффект используют для получения сильно охлаждённых смесей из снега и различных солей.

Снег, начиная таять при 0 °С, превращается в воду, в которой растворяется соль; несмотря на понижение температуры, сопровождающее растворение, получившаяся смесь не затвердевает. Снег, смешанный с этим раствором, продолжает таять, забирая энергию от раствора и, соответственно, охлаждая его. Процесс может продолжаться до тех пор, пока не будет достигнута температура замерзания полученного раствора. Смесь снега и поваренной соли в отношении 2:1 позволяет, таким образом, получить охлаждение до −21 °С; смесь снега с хлористым кальцием (CaCl 2) в отношении 7:10 позволяет получить охлаждение до −50 °С.

Задание №17A777

Где ноги будут мёрзнуть больше: на заснеженном тротуаре или на таком же тротуаре, посыпанном солью?


    • 1) на заснеженном тротуаре

    • 2) на тротуаре, посыпанном солью

    • 3) одинаково на заснеженном тротуаре и на тротуаре, посыпанном солью

    • 4) ответ зависит от температуры окружающего воздуха

  • Шум и здоровье человека

Современный шумовой дискомфорт вызывает у живых организмов болезненные реакции. Транспортный или производственный шум действует угнетающе на человека - утомляет, раздражает, мешает сосредоточиться. Как только такой шум смолкает, человек испытывает чувство облегчения и покоя.

Уровень шума в 20–30 децибел (дБ) практически безвреден для человека. Это естественный шумовой фон, без которого невозможна человеческая жизнь. Для “громких звуков” предельно допустимая граница примерно 80–90 децибел. Звук в 120–130 децибел уже вызывает у человека болевые ощущения, а в 150 - становится для него непереносимым. Влияние шума на организм зависит от возраста, слуховой чувствительности, продолжительности действия.

Наиболее пагубны для слуха длительные периоды непрерывного воздействия шума большой интенсивности. После воздействия сильного шума заметно повышается нормальный порог слухового восприятия, то есть самый низкий уровень (громкость), при котором данный человек еще слышит звук той или иной частоты. Измерения порогов слухового восприятия производят в специально оборудованных помещениях с очень низким уровнем окружающего шума, подавая звуковые сигналы через головные телефоны. Эта методика называется аудиометрией; она позволяет получить кривую индивидуальной чувствительности слуха, или аудиограмму. Обычно на аудиограммах отмечают отклонения от нормальной чувствительности слуха (см. рисунок).

Аудиограмма типичного сдвига порога слышимости после кратковременного воздействия шума


    • Задание №1EEF3E
Порог слышимости определяется как

      • 1) минимальная частота звука, воспринимаемая человеком

      • 2) максимальная частота звука, воспринимаемая человеком

      • 3) самый высокий уровень, при котором звук той или иной частоты не приводит к потере слуха

      • 4) самый низкий уровень, при котором данный человек еще слышит звук той или иной частоты

    • Задание №29840A
Какие утверждения, сделанные на основании аудиограммы (см. рисунок), справедливы?

А. Максимальный сдвиг порога слышимости соответствует низким частотам (примерно до 1000 Гц).

Б. Максимальная потеря слуха соответствует частоте 4000 Гц.


      • 1) только А

      • 2) только Б

      • 3) и А, и Б

      • 4) ни А, ни Б

    • Задание №79F950
Определите, какие источники шума, представленные в таблице, создают недопустимые уровни шума.

      • 1) В

      • 2) В и Б

      • 3) В, Б и Г

      • 4) В, Б, Г и А

  • Сейсмические волны

  • При землетрясении или крупном взрыве в коре и толще Земли возникают механические волны, которые называются сейсмическими. Эти волны распространяются в Земле и могут быть зарегистрированы при помощи специальных приборов – сейсмографов.
Действие сейсмографа основано на том принципе, что груз свободно подвешенного маятника при землетрясении остаётся практически неподвижным относительно Земли. На рисунке представлена схема сейсмографа. Маятник подвешен к стойке, прочно закреплённой в грунте, и соединен с пером, чертящим непрерывную линию на бумажной ленте равномерно вращающегося барабана. При колебаниях почвы стойка с барабаном также приходят в колебательное движение, и на бумаге появляется график волнового движения.



Различают несколько типов сейсмических волн, из них для изучения внутреннего строения Земли наиболее важны продольная волна P и поперечная волна S . Продольная волна характеризуется тем, что колебания частиц происходят в направлении распространения волны ; эти волны возникают и в твёрдых телах, и в жидкостях, и в газах. Поперечные механические волны не распространяются ни в жидкостях, ни в газах.

Скорость распространения продольной волны примерно в 2 раза превышает скорость распространения поперечной волны и составляет несколько километров в секунду. Когда волны P и S проходят через среду, плотность и состав которой изменяются, то скорости волн также меняются, что проявляется в преломлении волн. В более плотных слоях Земли скорость волн возрастает. Характер преломления сейсмических волн позволяет исследовать внутреннее строение Земли.


    • Задание №3F76F0
На рисунке представлены графики зависимости скоростей сейсмических волн от глубины погружения в недра Земли. График для какой из волн (P или S ) указывает на то, что ядро Земли находится не в твёрдом состоянии? Ответ обоснуйте.



    • Задание №8286DD
Какое(-ие) утверждение(-я) справедливо(-ы)?

А. При землетрясении груз маятника сейсмографа совершает колебания относительно поверхности Земли.

Б. Сейсмограф, установленный на некотором расстоянии от эпицентра землетрясения, сначала зафиксирует сейсмическую волну P , а затем волну S .


      • 1) только А

      • 2) только Б

      • 3) и А, и Б

      • 4) ни А, ни Б

    • Задание №9815BE
Сейсмическая волна P является

      • 1) механической продольной волной

      • 2) механической поперечной волной

      • 3) радиоволной

      • 4) световой волной

  • Запись звука
Возможность записывать звуки и затем воспроизводить их была открыта в 1877 году американским изобретателем Т.А. Эдисоном. Благодаря возможности записывать и воспроизводить звуки появилось звуковое кино. Запись музыкальных произведений, рассказов и даже целых пьес на граммофонные или патефонные пластинки стала массовой формой звукозаписи.

На рисунке 1 дана упрощенная схема механического звукозаписывающего устройства. Звуковые волны от источника (певца, оркестра и т.д.) попадают в рупор 1, в котором закреплена тонкая упругая пластинка 2, называемая мембраной. Под действием звуковой волны мембрана колеблется. Колебания мембраны передаются связанному с ней резцу 3, острие которого чертит при этом на вращающемся диске 4 звуковую бороздку. Звуковая бороздка закручивается по спирали от края диска к его центру. На рисунке показан вид звуковых бороздок на пластинке, рассматриваемых через лупу.

Диск, на котором производится звукозапись, изготавливается из специального мягкого воскового материала. С этого воскового диска гальванопластическим способом снимают медную копию (клише). При этом используется осаждение на электроде чистой меди при прохождении электрического тока через раствор ее солей. Затем с медной копии делают оттиски на дисках из пластмассы . Так получают граммофонные пластинки.

При воспроизведении звука граммофонную пластинку ставят под иглу, связанную с мембраной граммофона, и приводят пластинку во вращение. Двигаясь по волнистой бороздке пластинки, конец иглы колеблется, вместе с ним колеблется и мембрана, причем эти колебания довольно точно воспроизводят записанный звук.

Задание №5848B0

При механической записи звука используется камертон. При увеличении времени звучания камертона в 2 раза


Если у пианино нажать на педаль и сильно крикнуть на него, то от него можно будет услышать отзвук, который будет слышится некоторое время, с тоном (частотой) очень похожим на первоначальный звук.

Анализ и синтез звука.

При помощи наборов акустических резонаторов можно устано­вить, какие тоны входят в состав данного звука и с какими амплитудами они присутствуют в данном звуке. Такое установле­ние гармонического спектра сложного звука называется его гармоническим анализом. Раньше такой анализ действительно производился с помощью наборов резонаторов, в частности резонаторов Гельмгольца, представляющих собой полые шары разного размера, снабженные отростком, вставляющимся в ухо, и имеющие отверстие с противоположной стороны.

Для анализа звука существенно то, что всякий раз, когда в анализируемом звуке содержится тон с частотой резонатора, резонатор начинает громко звучать в этом тоне.

Такие способы анализа очень неточны и кропотливы. В на­стоящее время они вытеснены значительно более совершенными, точными и быстрыми электроакустиче­скими способами. Суть их сводится к тому, что акустическое колебание сначала преобра­зуется в электрическое колебание с сохранением той же формы, а следовательно, имеющее такой же спектр; затем уже электри­ческое колебание анализируется электрическими методами.

Можно указать один существенный результат гармонического анализа, касающийся звуков нашей речи. По тембру мы можем узнать голос человека. Но чем различаются звуковые колебания, когда один и тот же человек поёт на одной и той же ноте различные гласные: а, и, о, у, э? Другими словами, чем разли­чаются в этих случаях периодические колебания воздуха вызы­ваемые голосовым аппаратом при разных положениях губ и языка и изменениях формы полостей рта и горла? Очевидно, в спектрах гласных должны быть какие-то особенности, характерные для каждого гласного звука, сверх тех особенностей, которые создают тембр голоса данного человека. Гармонический анализ гласных подтверждает это предположение, а именно, гласные звуки характеризуются наличием в их спектрах областей оберто­нов с большой амплитудой, причём эти области лежат для каждой гласной всегда на одних и тех же частотах, независимо от высоты пропетого гласного звука. Эти области сильных оберто­нов называют формантами. Каждая гласная имеет две характерные для неё форманты.

Очевидно, если искусственным путём воспроизвести спектр того или иного звука, в частности спектр гласной, то наше ухо получит впечатление этого звука, хотя его естественный источ­ник отсутствовал бы. Особенно легко удаётся осуществлять такой синтез звуков (и синтез гласных) с помощью электроаку­стических устройств. Электрические музыкальные инструменты позволяют очень просто изменять спектр звука, т.е. менять его тембр. Простое переключение делает звук похожим на звуки то флейты, то скрипки, то человеческого голоса или же совсем своеобразным, непохожим на звук ни одного из обычных инстру­ментов.

Эффект Доплера в акустике.

Частота звуковых колебаний, которые слышит неподвижный наблюдатель в случае, если источник звука приближается или удаляется от него, отлична от частоты звука, воспринимаемой наблюдателем, который движется вместе с этим источником звука, или и наблюдатель и источник звука стоят на месте. Изменение частоты звуковых колебаний (высоты звука), связанное с относительным движением источника и наблюдателя называется акустическим эффектом Доплера. Когда источник и приемник звука сближаются, то высота звука повышается, а если они удаляются. то высота звука понижается. Это связано с тем, что при движении источника звука относительно среды, в кото­рой распространяются звуковые волны, скорость такого движения векторно складывается со скоростью распространения звука.

Например, если машина с включенной сиреной приближается, а затем, проехав мимо, удаляется, то сначала слышен звук высокого тона, а затем низкого.

Звуковые удары

Ударные волны возникают при выстреле, взрыве, электриче­ском разряде и т.п. Основной особенностью ударной волны является резкий скачок давления на фронте волны. В момент прохождения ударной волны максимум давления в данной точке возникает практически мгновенно за время порядка 10-10 с. При этом одновременно скачком изменяются плотность и темпера­тура среды. Затем давление медленно падает. Мощность ударной волны зависит от силы взрыва. Скорость распространения удар­ных волн может быть больше скорости звука в данной среде. Если, например, ударная волна увеличивает давление в полтора раза, то при этом температура повышается на 35 0С и скорость распространения фронта такой волны примерно равна 400 м/с. Стены средней толщины, которые встречаются на пути такой ударной волны будут разрушены.

Мощные взрывы будут сопровождаться ударными волнами, ко­торые создают в максимальной фазе фронта волны давление, в 10 раз превышающее атмосферное. При этом плотность среды увели­чивается в 4 раза, температура повышается на 500 0C, и ско­рость распространения такой волны близка к 1 км/с. Толщина фронта ударной волны имеет порядок длины свободного пробега молекул (10-7 - 10-8 м), поэтому при теоретическом рассмотрении можно считать, что фронт ударной волны представляет собой поверхность взрыва, при переходе через которую параметры газа изменяются скачком.

Ударные волны так же возникают, когда твёрдое тело дви­жется со скоростью, превышающей скорость звука. Перед самолё­том, который летит со сверхзвуковой скоростью, образуется ударная волна, которая является основным фактором, определяю­щим сопротивление движению самолёта. Чтобы это сопротивление ослабить, сверхзвуковым самолётам придают стреловидную форму.

Быстрое сжатие воздуха перед движущимся с большой скоростью предметом приводит к повышению температуры, которая с нарастанием скорости предмета - увеличивается. Когда ско­рость самолёта достигает скорость звука, температура воздуха достигает 60 0C. При скорости движения вдвое выше скорости звука, температура повышается на 240 0C, а при скорости, близкой к тройной скорости звука - становится 800 0С. Скорости близкие к 10 км/с приводят к плавлению и превращению движущегося тела в газообразное состояние. Падение метеоритов со скоростью в несколько десятков километров в секунду приво­дит к тому, что уже на высоте 150 - 200 километров, даже в разрежённой атмосфере метеоритные тела заметно нагреваются и светятся. Большинство из них на высотах 100 - 60 километров полностью распадаются.

Шумы.

Наложение большого количества колебаний беспорядочно сме­шанных одно относительно другого и произвольно изменяющих интенсивность во времени, приводят к сложной форме колебаний. Такие сложные колебания, состоящие из большого числа простых звуков различной тональности, называют шумами. Примерами могут служить шелест листьев в лесу, грохот водопада, шум на улице города. К шумам также можно отнести звуки, выражаемые согласными. Шумы могут отличатся распределением по силе звука, по частоте и продолжительности звучания во времени. Длительное время звучат шумы, создаваемые ветром, падающей воды, морским прибоем. Относительно кратковременны раскаты грома, рокот волн - это низкочастотные шумы. Механические шумы могут вызываться вибрацией твёрдых тел. Возникающие при лопании пузырьков и полостей в жидкости звуки, которые сопро­вождают процессы кавитации, приводят к кавитационным шумам.